Suppr超能文献

用于点云的局部等变描述符的无监督学习

Unsupervised Learning of Local Equivariant Descriptors for Point Clouds.

作者信息

Marcon Marlon, Spezialetti Riccardo, Salti Samuele, Silva Luciano, Stefano Luigi Di

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9687-9702. doi: 10.1109/TPAMI.2021.3126713. Epub 2022 Nov 7.

Abstract

Correspondences between 3D keypoints generated by matching local descriptors are a key step in 3D computer vision and graphic applications. Learned descriptors are rapidly evolving and outperforming the classical handcrafted approaches in the field. Yet, to learn effective representations they require supervision through labeled data, which are cumbersome and time-consuming to obtain. Unsupervised alternatives exist, but they lag in performance. Moreover, invariance to viewpoint changes is attained either by relying on data augmentation, which is prone to degrading upon generalization on unseen datasets, or by learning from handcrafted representations of the input which are already rotation invariant but whose effectiveness at training time may significantly affect the learned descriptor. We show how learning an equivariant 3D local descriptor instead of an invariant one can overcome both issues. LEAD (Local EquivAriant Descriptor) combines Spherical CNNs to learn an equivariant representation together with plane-folding decoders to learn without supervision. Through extensive experiments on standard surface registration datasets, we show how our proposal outperforms existing unsupervised methods by a large margin and achieves competitive results against the supervised approaches, especially in the practically very relevant scenario of transfer learning.

摘要

通过匹配局部描述符生成的3D关键点之间的对应关系是3D计算机视觉和图形应用中的关键步骤。深度学习描述符正在迅速发展,并且在该领域中优于传统的手工方法。然而,为了学习有效的表示,它们需要通过标记数据进行监督,而获取标记数据既繁琐又耗时。虽然存在无监督的替代方法,但它们在性能上落后。此外,视角变化的不变性要么通过依赖数据增强来实现,而数据增强在未见数据集上进行泛化时容易退化,要么通过从已经具有旋转不变性的输入的手工表示中学习来实现,但这种手工表示在训练时的有效性可能会显著影响所学习的描述符。我们展示了学习一个等变的3D局部描述符而不是不变的描述符如何能够克服这两个问题。LEAD(局部等变描述符)结合球面卷积神经网络来学习等变表示,并结合平面折叠解码器进行无监督学习。通过在标准表面配准数据集上进行的大量实验,我们展示了我们的方法如何大幅优于现有的无监督方法,并在与有监督方法的对比中取得了有竞争力的结果,特别是在实际非常相关的迁移学习场景中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验