文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无框架固定伽玛刀放射外科手术的固定增强现实导航。

Navigation of frameless fixation for gamma knife radiosurgery using fixed augmented reality.

机构信息

Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.

MEDICALIP Co. Ltd., Seoul, Republic of Korea.

出版信息

Sci Rep. 2022 Mar 16;12(1):4486. doi: 10.1038/s41598-022-08390-y.


DOI:10.1038/s41598-022-08390-y
PMID:35296720
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8927150/
Abstract

Augmented reality (AR) offers a new medical treatment approach. We aimed to evaluate frameless (mask) fixation navigation using a 3D-printed patient model with fixed-AR technology for gamma knife radiosurgery (GKRS). Fixed-AR navigation was developed using the inside-out method with visual inertial odometry algorithms, and the flexible Quick Response marker was created for object-feature recognition. Virtual 3D-patient models for AR-rendering were created via 3D-scanning utilizing TrueDepth and cone-beam computed tomography (CBCT) to generate a new GammaKnife Icon™ model. A 3D-printed patient model included fiducial markers, and virtual 3D-patient models were used to validate registration accuracy. Registration accuracy between initial frameless fixation and re-fixation navigated fixed-AR was validated through visualization and quantitative method. The quantitative method was validated through set-up errors, fiducial marker coordinates, and high-definition motion management (HDMM) values. A 3D-printed model and virtual models were correctly overlapped under frameless fixation. Virtual models from both 3D-scanning and CBCT were enough to tolerate the navigated frameless re-fixation. Although the CBCT virtual model consistently delivered more accurate results, 3D-scanning was sufficient. Frameless re-fixation accuracy navigated in virtual models had mean set-up errors within 1 mm and 1.5° in all axes. Mean fiducial marker differences from coordinates in virtual models were within 2.5 mm in all axes, and mean 3D errors were within 3 mm. Mean HDMM difference values in virtual models were within 1.5 mm of initial HDMM values. The variability from navigation fixed-AR is enough to consider repositioning frameless fixation without CBCT scanning for treating patients fractionated with large multiple metastases lesions (> 3 cm) who have difficulty enduring long beam-on time. This system could be applied to novel GKRS navigation for frameless fixation with reduced preparation time.

摘要

增强现实(AR)提供了一种新的治疗方法。我们旨在评估使用 3D 打印患者模型和固定 AR 技术进行无框架(面罩)固定导航在伽玛刀放射外科(GKRS)中的应用。固定 AR 导航采用基于视觉惯性里程计算法的内外结合方法开发,并创建了灵活的快速响应标记来识别物体特征。通过使用 TrueDepth 和锥形束计算机断层扫描(CBCT)进行 3D 扫描,创建了用于 AR 渲染的虚拟 3D 患者模型,以生成新的 Gamma Knife Icon™ 模型。3D 打印患者模型包括基准标记,并且使用虚拟 3D 患者模型来验证注册准确性。通过可视化和定量方法验证初始无框架固定和重新导航固定 AR 之间的注册准确性。通过设置误差、基准标记坐标和高清运动管理(HDMM)值来验证定量方法的准确性。无框架固定下,3D 打印模型和虚拟模型正确重叠。来自 3D 扫描和 CBCT 的虚拟模型足以耐受导航无框架重新固定。尽管 CBCT 虚拟模型始终提供更准确的结果,但 3D 扫描已经足够。在虚拟模型中进行无框架重新固定导航的准确性,所有轴上的平均设置误差均在 1 毫米和 1.5 度以内。从虚拟模型中的坐标到基准标记的平均差异均在所有轴上均在 2.5 毫米以内,平均 3D 误差均在 3 毫米以内。虚拟模型中平均 HDMM 差值在初始 HDMM 值的 1.5 毫米以内。从导航固定 AR 的变化足以考虑重新定位无框架固定,而无需对难以忍受长射束时间的患有大量多发转移病灶(>3 厘米)的患者进行分次治疗的 CBCT 扫描。该系统可应用于新型 GKRS 导航,用于减少准备时间的无框架固定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3b/8927150/39f8699af40e/41598_2022_8390_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3b/8927150/b93006043c95/41598_2022_8390_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3b/8927150/d6567cc6d42d/41598_2022_8390_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3b/8927150/2dfe6646a0d1/41598_2022_8390_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3b/8927150/39f8699af40e/41598_2022_8390_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3b/8927150/b93006043c95/41598_2022_8390_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3b/8927150/d6567cc6d42d/41598_2022_8390_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3b/8927150/2dfe6646a0d1/41598_2022_8390_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3b/8927150/39f8699af40e/41598_2022_8390_Fig4_HTML.jpg

相似文献

[1]
Navigation of frameless fixation for gamma knife radiosurgery using fixed augmented reality.

Sci Rep. 2022-3-16

[2]
Development of an inside-out augmented reality technique for neurosurgical navigation.

Neurosurg Focus. 2021-8

[3]
Assessment of motion error for frame-based and noninvasive mask-based fixation using the Leksell Gamma Knife Icon radiosurgery system.

J Neurosurg. 2018-12-1

[4]
Assessment of image co-registration accuracy for frameless gamma knife surgery.

PLoS One. 2018-3-2

[5]
Optimal mask fixation method for frameless radiosurgery with Leksell Gamma Knife Icon.

J Appl Clin Med Phys. 2023-4

[6]
Performance of the cone beam computed tomography-based patient positioning system on the Gamma Knife Icon™.

Med Phys. 2019-8-20

[7]
Real-Time Infrared Motion Tracking Analysis for Patients Treated With Gated Frameless Image Guided Stereotactic Radiosurgery.

Int J Radiat Oncol Biol Phys. 2019-10-23

[8]
On the stability of Leksell Vantage stereotactic head frame fixation in Gamma Knife radiosurgery: a study based on cone-beam computed tomography imaging and the High Definition Motion Management system.

J Neurosurg. 2023-9-1

[9]
Gamma Knife icon CBCT offers improved localization workflow for frame-based treatment.

J Appl Clin Med Phys. 2019-11

[10]
Validity of the use of nose tip motion as a surrogate for intracranial motion in mask-fixated frameless Gamma Knife Icon™ therapy.

J Radiosurg SBRT. 2017

引用本文的文献

[1]
Augmented Reality (AR) for Surgical Robotic and Autonomous Systems: State of the Art, Challenges, and Solutions.

Sensors (Basel). 2023-7-6

[2]
Augmented Reality in Stereotactic Neurosurgery: Current Status and Issues.

Neurol Med Chir (Tokyo). 2023-4-15

[3]
Visualization, navigation, augmentation. The ever-changing perspective of the neurosurgeon.

Brain Spine. 2022-8-17

[4]
Brain Tumor and Augmented Reality: New Technologies for the Future.

Int J Environ Res Public Health. 2022-5-23

本文引用的文献

[1]
Development of an inside-out augmented reality technique for neurosurgical navigation.

Neurosurg Focus. 2021-8

[2]
Clinical application of patient-specific 3D printing brain tumor model production system for neurosurgery.

Sci Rep. 2021-3-26

[3]
Frame-Based and Mask-Based Stereotactic Radiosurgery: The Patient Experience, Compared.

Stereotact Funct Neurosurg. 2021

[4]
Immersive 3-Dimensional Virtual Reality Modeling for Case-Specific Presurgical Discussions in Cerebrovascular Neurosurgery.

Oper Neurosurg (Hagerstown). 2021-2-16

[5]
Gamma Knife icon CBCT offers improved localization workflow for frame-based treatment.

J Appl Clin Med Phys. 2019-11

[6]
Frameless Fractionated Gamma Knife Radiosurgery with ICON™ for Large Metastatic Brain Tumors.

J Korean Med Sci. 2019-2-12

[7]
Intra-fraction motion gating during frameless Gamma Knife Icon™ therapy: The relationship between cone beam CT assessed intracranial anatomy displacement and infrared-tracked nose marker displacement.

J Radiosurg SBRT. 2019

[8]
Assessment of motion error for frame-based and noninvasive mask-based fixation using the Leksell Gamma Knife Icon radiosurgery system.

J Neurosurg. 2018-12-1

[9]
Quality of life of older adults with cancer in Korea.

Soc Work Health Care. 2018-8

[10]
Assessment of image co-registration accuracy for frameless gamma knife surgery.

PLoS One. 2018-3-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索