Suppr超能文献

硼掺杂金刚石电极优于微球免疫分析的最先进电致化学发光。

Boron-Doped Diamond Electrode Outperforms the State-of-the-Art Electrochemiluminescence from Microbeads Immunoassay.

机构信息

Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.

Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.

出版信息

ACS Sens. 2022 Apr 22;7(4):1145-1155. doi: 10.1021/acssensors.2c00156. Epub 2022 Mar 17.

Abstract

Electrochemiluminescence (ECL) is a powerful transduction technique where light emission from a molecular species is triggered by an electrochemical reaction. Application to biosensors has led to a wide range of electroanalytical methods with particular impact on clinical analysis for diagnostic and therapeutic monitoring. Therefore, the quest for increasing the sensitivity while maintaining reproducible and easy procedures has brought investigations and innovations in (i) electrode materials, (ii) luminophores, and (iii) reagents. Particularly, the ECL signal is strongly affected by the electrode material and its surface modification during the ECL experiments. Here, we exploit boron-doped diamond (BDD) as an electrode material in microbead-based ECL immunoassay to be compared with the approach used in commercial instrumentation. We conducted a careful characterization of ECL signals from a tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy))/tri--propylamine (TPrA) system, both homogeneous (i.e., free diffusing Ru(bpy)) and heterogeneous (i.e., Ru(bpy) bound on microbeads). We investigated the methods to promote TPrA oxidation, which led to the enhancement of ECL intensity, and the results revealed that the BDD surface properties greatly affect the ECL emission, so it does the addition of neutral, cationic, or anionic surfactants. Our results from homogeneous and heterogeneous microbead-based ECL show opposite outcomes, which have practical consequences in ECL optimization. In conclusion, by using Ru(bpy)-labeled immunoglobulins bound on microbeads, the ECL resulted in an increase of 70% and a double signal-to-noise ratio compared to platinum electrodes, which are actually used in commercial instrumentation for clinical analysis. This research infers that microbead-based ECL immunoassays with a higher sensitivity can be realized by BDD.

摘要

电化学发光(ECL)是一种强大的转导技术,其中分子物种的发光是由电化学反应触发的。该技术在生物传感器中的应用导致了广泛的电化学生物分析方法,特别是在临床分析中的诊断和治疗监测方面。因此,在保持可重复和简单的程序的同时,提高灵敏度的追求带来了在(i)电极材料、(ii)发光体和(iii)试剂方面的研究和创新。特别是,ECL 信号强烈受到电极材料及其在 ECL 实验过程中的表面修饰的影响。在这里,我们利用掺硼金刚石(BDD)作为微珠基 ECL 免疫分析中的电极材料,并与商业仪器中使用的方法进行比较。我们对三(2,2'-联吡啶)钌(II)(Ru(bpy))/三--丙胺(TPrA)体系的电化学发光信号进行了仔细的表征,包括均相(即自由扩散的 Ru(bpy))和非均相(即 Ru(bpy)结合在微珠上)。我们研究了促进 TPrA 氧化的方法,这导致了 ECL 强度的增强,结果表明 BDD 表面性质对 ECL 发射有很大影响,因此添加中性、阳离子或阴离子表面活性剂也会有影响。我们从均相和非相微珠基 ECL 获得的结果显示出相反的结果,这对 ECL 的优化有实际影响。总之,通过使用结合在微珠上的 Ru(bpy)标记的免疫球蛋白,与实际用于临床分析的商业仪器中的铂电极相比,ECL 导致了 70%的增加和两倍的信噪比。这项研究推断,通过 BDD 可以实现具有更高灵敏度的微珠基 ECL 免疫分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验