Abjean Laurene, Ben Haim Lucile, Riquelme-Perez Miriam, Gipchtein Pauline, Derbois Céline, Palomares Marie-Ange, Petit Fanny, Hérard Anne-Sophie, Gaillard Marie-Claude, Guillermier Martine, Gaudin-Guérif Mylène, Aurégan Gwennaëlle, Sagar Nisrine, Héry Cameron, Dufour Noëlle, Robil Noémie, Kabani Mehdi, Melki Ronald, De la Grange Pierre, Bemelmans Alexis P, Bonvento Gilles, Deleuze Jean-François, Hantraye Philippe, Flament Julien, Bonnet Eric, Brohard Solène, Olaso Robert, Brouillet Emmanuel, Carrillo-de Sauvage Maria-Angeles, Escartin Carole
Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France.
Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France.
Brain. 2023 Jan 5;146(1):149-166. doi: 10.1093/brain/awac068.
Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.
亨廷顿舞蹈症是一种致命的神经退行性疾病,其特征为纹状体神经变性、突变型亨廷顿蛋白聚集以及反应性星形胶质细胞的存在。星形胶质细胞是神经元的重要伙伴,并在亨廷顿舞蹈症中发生特定的反应性应答,涉及形态、分子和功能变化。反应性星形胶质细胞如何导致亨廷顿舞蹈症仍是一个悬而未决的问题,尤其是因为它们的反应状态在实验小鼠模型中难以重现。在此,我们表明,JAK2-STAT3信号通路作为控制星形胶质细胞反应性应答的核心级联反应,在亨廷顿舞蹈症患者的壳核中被激活。通过病毒基因转移在星形胶质细胞中选择性激活该级联反应,可减少神经元中突变型亨廷顿蛋白聚集体的数量和大小,并改善亨廷顿舞蹈症两个互补小鼠模型中的神经元缺陷。它还可减少纹状体萎缩并提高谷氨酸水平,这是通过非侵入性磁共振成像测量的两个主要临床结果。此外,星形胶质细胞特异性转录组分析表明,星形胶质细胞中JAK2-STAT3信号通路的激活协调了一个转录程序,该程序通过溶酶体和泛素-蛋白酶体降解系统提高其内在蛋白水解能力。该信号通路还增强了伴侣蛋白DNAJB1的产生及其外泌体释放,这有助于清除神经元中的突变型亨廷顿蛋白。总之,我们的结果表明,JAK2-STAT3信号通路控制着亨廷顿舞蹈症反应性星形胶质细胞中有益的蛋白质稳态反应,这涉及与神经元的双向信号传导,以减少突变型亨廷顿蛋白聚集,最终改善疾病结果。