Suppr超能文献

V形硅纳米天线中的宽带单向横向光散射

Broadband unidirectional transverse light scattering in a V-shaped silicon nanoantenna.

作者信息

Yu Yang, Liu Jinze, Yu Yidu, Qiao Dayong, Li Yongqian, Salas-Montiel Rafael

出版信息

Opt Express. 2022 Feb 28;30(5):7918-7927. doi: 10.1364/OE.450943.

Abstract

The efficient manipulation of light-matter interactions in subwavelength all-dielectric nanostructures offers a unique opportunity for the design of novel low-loss visible- and telecom-range nanoantennas for light routing applications. Several studies have achieved longitudinal and transverse light scattering with a proper amplitude and phase balance among the multipole moments excited in dielectric nanoantennas. However, they only involve the interaction between electric dipole, magnetic dipole, and up to the electric quadrupole. Here, we extend and demonstrate a unidirectional transverse light scattering in a V-shaped silicon nanoantenna that involves the balance up to the magnetic quadrupole moment. Based on the long-wavelength approximation and exact multipole decomposition analysis, we find the interference conditions needed for near-unity unidirectional transverse light scattering along with near-zero scattering in the opposite direction. These interference conditions involve relative amplitude and phases of the electromagnetic dipoles and quadrupoles supported by the silicon nanoantenna. The conditions can be applied for the development of either polarization- or wavelength- dependent light routing on a V-shaped silicon and plasmonic nanoantennas.

摘要

在亚波长全介质纳米结构中对光与物质相互作用进行有效调控,为设计用于光路由应用的新型低损耗可见光和电信波段纳米天线提供了独特机遇。多项研究已在介电纳米天线中激发的多极矩之间实现了具有适当幅度和相位平衡的纵向和横向光散射。然而,这些研究仅涉及电偶极子、磁偶极子以及至多电四极子之间的相互作用。在此,我们扩展并展示了一种V形硅纳米天线中的单向横向光散射,该散射涉及直至磁四极矩的平衡。基于长波长近似和精确的多极分解分析,我们找到了近乎完全单向横向光散射以及相反方向近乎零散射所需的干涉条件。这些干涉条件涉及硅纳米天线所支持的电磁偶极子和四极子的相对幅度和相位。这些条件可应用于在V形硅和等离子体纳米天线上开发偏振或波长相关的光路由。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验