Wang Juanfen, Jin Yuan, Gong Xuguang, Yang Lingzhen, Chen Jie, Xue Pingping
Opt Express. 2022 Feb 28;30(5):8199-8211. doi: 10.1364/OE.448972.
We investigate the generation of random soliton-like beams based on the Kuznetsov-Ma solitons in a nonlinear fractional Schrödinger equation (NLFSE). For Lévy index α = 1, the Kuznetsov-Ma solitons split into two nondiffracting beams during propagation in linear regime. According to the different input positions of the Kuznetsov-Ma solitons, the diffraction-free beams can be divided into three different types: bright-dark, dark-bright and bright-bright beams. In the nonlinear regime, the Kuznetsov-Ma solitons can be evolved into random soliton-like beams due to the collapse. The number of soliton-like beams is related to the nonlinear coefficient and the Lévy index. The bigger the nonlinear coefficient, the more beams generated. Moreover, the peak intensity of soliton-like beams presents a Gaussian distribution under the large nonlinear effect. In practice, the evolution of KM soliton can be realized by a plane wave with a Gaussian perturbation, which can be confirmed that they have the similar dynamics of propagation. In two dimensions, the plane wave with a Gaussian perturbation can be evolved into a bright-dark axisymmetric ring beam in the linear regime. Under the nonlinear modulation, the energy accumulates to the center and finally breaks apart into random beam filaments.
我们研究了基于非线性分数薛定谔方程(NLFSE)中的库兹涅佐夫-马孤子产生随机类孤子光束的情况。对于 Lévy 指数α = 1,库兹涅佐夫-马孤子在在线性区域传播过程中分裂为两束无衍射光束。根据库兹涅佐夫-马孤子的不同输入位置,无衍射光束可分为三种不同类型:亮-暗、暗-亮和亮-亮光束。在非线性区域,由于坍缩,库兹涅佐夫-马孤子可演化为随机类孤子光束。类孤子光束的数量与非线性系数和 Lévy 指数有关。非线性系数越大,产生的光束越多。此外,在大非线性效应下,类孤子光束的峰值强度呈现高斯分布。在实际中,KM 孤子的演化可以通过具有高斯微扰的平面波来实现,这可以证实它们具有相似的传播动力学。在二维中,具有高斯微扰的平面波在在线性区域可演化为亮-暗轴对称环形光束。在非线性调制下,能量聚集到中心,最终分裂成随机的光束细丝。