Suppr超能文献

疾病患病率在临床预测规则传播中的重要性。以链球菌性咽炎为例。

The importance of disease prevalence in transporting clinical prediction rules. The case of streptococcal pharyngitis.

作者信息

Poses R M, Cebul R D, Collins M, Fager S S

出版信息

Ann Intern Med. 1986 Oct;105(4):586-91. doi: 10.7326/0003-4819-105-4-586.

Abstract

Because clinical prediction rules often are applied in new settings to calculate the probability of a disease, we evaluated the accuracy of three rules for predicting streptococcal pharyngitis in 310 patients. Use of the rules led to overestimations of disease probability in 47%, 82%, and 93% of the patients. When we used receiver-operating characteristic curve analysis, no rule lost power to discriminate streptococcal from nonstreptococcal causes of pharyngitis. The overestimations in disease probability likely were caused by differences in disease prevalence between our setting (5%) and the settings in which they were developed (15% to 17%). All rules led to accurate predictions when they were adjusted for the disease prevalence found in our setting using a likelihood ratio formulation of Bayes' theorem. The value of prediction rules, like that of other diagnostic tests, is affected by differences in disease prevalence in different settings. Failure to recognize and adjust for these differences may cause poor decision making or the premature dismissal of valid rules.

摘要

由于临床预测规则常常应用于新环境中以计算疾病的概率,我们评估了三种用于预测310例患者链球菌性咽炎的规则的准确性。使用这些规则导致在47%、82%和93%的患者中疾病概率被高估。当我们使用受试者工作特征曲线分析时,没有一个规则失去区分链球菌性咽炎与非链球菌性咽炎病因的能力。疾病概率的高估可能是由于我们所在环境中的疾病患病率(5%)与这些规则所开发的环境中的患病率(15%至17%)存在差异所致。当使用贝叶斯定理的似然比公式针对我们所在环境中发现的疾病患病率对所有规则进行调整时,它们都能做出准确的预测。预测规则的价值与其他诊断测试一样,会受到不同环境中疾病患病率差异的影响。未能认识到并调整这些差异可能会导致决策失误或过早摒弃有效的规则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验