Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada.
Sci Rep. 2022 Mar 17;12(1):4595. doi: 10.1038/s41598-022-08661-8.
Most cases of cystic fibrosis (CF) are caused by class 2 mutations in the cystic fibrosis transmembrane regulator (CFTR). These proteins preserve some channel function but are retained in the endoplasmic reticulum (ER). Partial rescue of the most common CFTR class 2 mutant, F508del-CFTR, has been achieved through the development of pharmacological chaperones (Tezacaftor and Elexacaftor) that bind CFTR directly. However, it is not clear whether these drugs will rescue all class 2 CFTR mutants to a medically relevant level. We have previously shown that the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen can correct F508del-CFTR trafficking. Here, we utilized RNAi and pharmacological inhibitors to determine the mechanism of action of the NSAID glafenine. Using cellular thermal stability assays (CETSAs), we show that it is a proteostasis modulator. Using medicinal chemistry, we identified a derivative with a fourfold increase in CFTR corrector potency. Furthermore, we show that these novel arachidonic acid pathway inhibitors can rescue difficult-to-correct class 2 mutants, such as G85E-CFTR > 13%, that of non-CF cells in well-differentiated HBE cells. Thus, the results suggest that targeting the arachidonic acid pathway may be a profitable way of developing correctors of certain previously hard-to-correct class 2 CFTR mutations.
大多数囊性纤维化 (CF) 病例是由囊性纤维化跨膜转导调节因子 (CFTR) 的 2 类突变引起的。这些蛋白质保留了一些通道功能,但仍保留在内质网 (ER) 中。通过开发直接结合 CFTR 的药理学伴侣(Tezacaftor 和 Elexacaftor),已经实现了最常见的 CFTR 2 类突变体 F508del-CFTR 的部分挽救。然而,目前尚不清楚这些药物是否能将所有 2 类 CFTR 突变体挽救到具有医学相关性的水平。我们之前已经表明,非甾体抗炎药 (NSAID) 布洛芬可以纠正 F508del-CFTR 的转运。在这里,我们利用 RNAi 和药理学抑制剂来确定 NSAID 氟比洛芬的作用机制。使用细胞热稳定性测定 (CETSAs),我们表明它是一种蛋白质稳态调节剂。通过药物化学,我们鉴定出一种衍生物,其 CFTR 校正剂效力增加了四倍。此外,我们表明这些新型花生四烯酸途径抑制剂可以挽救难以纠正的 2 类突变体,例如 G85E-CFTR>13%,在分化良好的 HBE 细胞中非 CF 细胞中的 13%。因此,结果表明,靶向花生四烯酸途径可能是开发某些以前难以纠正的 2 类 CFTR 突变体校正剂的一种有利途径。