Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, University of Bonn, Bonn, Germany.
J Comput Chem. 2022 May 5;43(12):839-846. doi: 10.1002/jcc.26839. Epub 2022 Mar 18.
Revised versions of our published pob-TZVP basis sets [Laun, J.; Vilela Oliveira, D. and Bredow, T., J. Comput. Chem., 2018, 39 (19), 1285-1290] have been derived for periodic quantum-chemical solid-state calculations. They complete our pob-TZVP-rev2 series [Vilela Oliveira, D.; Laun, J.; Peintinger, M. F. and Bredow, T., J. Comput. Chem., 2019, 40 (27), 2364-2376 and Laun, J. and Bredow, J. Comput. Chem. 2021; 42 (15), 1064-1072] for the elements of the fifth period and are based on the fully relativistic effective core potentials (ECPs) of the Stuttgart/Cologne group and the def2-TZVP valence basis of the Ahlrichs group. The pob-TZVP-rev2 basis sets are developed to minimize the basis set superposition error (BSSE) in crystalline systems. For the applied PW1PW hybrid functional, the overall performance, transferability, and SCF stability of the resulting pob-TZVP-rev2 basis sets are significantly improved compared to the original pob-TZVP basis sets. After augmentation with single diffuse s- and p-functions, reference plane-wave band structures of metals can be accurately reproduced.
我们已为周期性量子化学固态计算,衍生出我们已发表的 pob-TZVP 基组 [Laun, J.; Vilela Oliveira, D. and Bredow, T., J. Comput. Chem., 2018, 39 (19), 1285-1290] 的修订版本。这些基组是我们的 pob-TZVP-rev2 系列 [Vilela Oliveira, D.; Laun, J.; Peintinger, M. F. and Bredow, T., J. Comput. Chem., 2019, 40 (27), 2364-2376 和 Laun, J. 和 Bredow, J. Comput. Chem. 2021; 42 (15), 1064-1072] 的一部分,可用于第五周期的元素,并基于 Stuttgart/Cologne 集团的完全相对论有效核势 (ECP) 和 Ahlrichs 集团的 def2-TZVP 价基。pob-TZVP-rev2 基组的开发目的是最小化晶体系统中的基组叠加误差 (BSSE)。对于所应用的 PW1PW 混合泛函,与原始的 pob-TZVP 基组相比,所产生的 pob-TZVP-rev2 基组的整体性能、可转移性和自洽场稳定性都得到了显著改善。经过单扩展弥散 s 和 p 函数的扩充,可以准确再现金属的参考平面波能带结构。