Suppr超能文献

电子-空穴结合调控卤化物钙钛矿纳米晶体薄膜中的载流子传输。

Electron-Hole Binding Governs Carrier Transport in Halide Perovskite Nanocrystal Thin Films.

作者信息

Lichtenegger Michael F, Drewniok Jan, Bornschlegl Andreas, Lampe Carola, Singldinger Andreas, Henke Nina A, Urban Alexander S

机构信息

Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximiliäns-Universitat München, Königinstr. 10, 80539 Munich, Germany.

出版信息

ACS Nano. 2022 Apr 26;16(4):6317-6324. doi: 10.1021/acsnano.2c00369. Epub 2022 Mar 18.

Abstract

Two-dimensional halide perovskite nanoplatelets (NPLs) have exceptional light-emitting properties, including wide spectral tunability, ultrafast radiative decays, high quantum yields (QY), and oriented emission. Due to the high binding energies of electron-hole pairs, excitons are generally considered the dominant species responsible for carrier transfer in NPL films. To realize efficient devices, it is imperative to understand how exciton transport progresses therein. We employ spatially and temporally resolved optical microscopy to map exciton diffusion in perovskite nanocrystal (NC) thin films between 15 °C and 55 °C. At room temperature (RT), we find the diffusion length to be inversely correlated to the thickness of the nanocrystals (NCs). With increasing temperatures, exciton diffusion declines for all NC films, but at different rates. This leads to specific temperature turnover points, at which thinner NPLs exhibit higher diffusion lengths. We attribute this anomalous diffusion behavior to the coexistence of excitons and free electron hole-pairs inside the individual NCs within our temperature range. The organic ligand shell surrounding the NCs prevents charge transfer. Accordingly, any time an electron-hole pair spends in the unbound state reduces the FRET-mediated inter-NC transfer rates and, consequently, the overall diffusion. These results clarify how exciton diffusion progresses in strongly confined halide perovskite NC films, emphasizing critical considerations for optoelectronic devices.

摘要

二维卤化物钙钛矿纳米片(NPLs)具有卓越的发光特性,包括宽光谱可调性、超快辐射衰减、高量子产率(QY)和定向发射。由于电子 - 空穴对的高结合能,激子通常被认为是NPL薄膜中负责载流子转移的主要物种。为了实现高效器件,必须了解激子在其中是如何传输的。我们采用空间和时间分辨光学显微镜来绘制15℃至55℃之间钙钛矿纳米晶体(NC)薄膜中的激子扩散图。在室温(RT)下,我们发现扩散长度与纳米晶体(NCs)的厚度成反比。随着温度升高,所有NC薄膜的激子扩散都下降,但速率不同。这导致了特定的温度转折点,在该点上较薄的NPLs表现出更高的扩散长度。我们将这种异常扩散行为归因于在我们的温度范围内单个NCs内部激子和自由电子空穴对的共存。围绕NCs的有机配体壳层阻止了电荷转移。因此,电子 - 空穴对在未结合状态下花费的任何时间都会降低FRET介导的NC间转移速率,从而降低整体扩散。这些结果阐明了激子在强受限卤化物钙钛矿NC薄膜中是如何扩散的,强调了对光电器件的关键考虑因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验