División Polímeros Nanoestructurados, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP-CONICET y Departamento de Química, UNMdP, Av. Cristóbal Colón 10850, B7606BWV Mar del Plata, Buenos Aires, Argentina.
Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de Mayo 1021, San Martín, B1650 Buenos Aires, Argentina.
Langmuir. 2022 Mar 29;38(12):3876-3886. doi: 10.1021/acs.langmuir.2c00127. Epub 2022 Mar 18.
In this work, monodisperse silica-coated gold nanoparticles (NPs) were synthesized and used for obtaining aqueous colloidal dispersions with an optimum relationship between colloidal stability and photothermal activity. The idea behind this design was to produce systems with the advantages of the presence of a silica shell (biocompatibility, potential for surface modification, and protecting effect) with a minimal loss of optical and thermal properties. With this aim, the photothermal properties of NPs with silica shells of different thicknesses were analyzed under conditions of high radiation extinction. By using amorphous, gel-like silica coatings, thicknesses higher than 40 nm could be obtained without an important loss of the light absorption capacity of the colloids and with a significant photothermal response even at low NP concentrations. The effects produced by changes in the solvent and in the NP concentration were also analyzed. The results show that the characteristics of the shell control both, the photothermal effect and the optical properties of the colloidal dispersions. As the presence of a silica shell strongly enhances the possibilities of adding cargo molecules or probes, these colloids can be considered of high interest for biomedical therapies, sensing applications, remote actuation, and other technological applications.
在这项工作中,合成了单分散二氧化硅包覆金纳米粒子(NPs),并用于获得具有胶体稳定性和光热活性之间最佳关系的水相胶体分散体。这种设计的想法是生产具有二氧化硅壳(生物相容性、表面改性潜力和保护作用)优势的系统,同时光学和热性能的损失最小。为此,在高辐射消光条件下分析了具有不同厚度二氧化硅壳的 NPs 的光热性能。通过使用非晶态、凝胶状的二氧化硅涂层,可以获得高于 40nm 的厚度,而不会对胶体的光吸收能力产生重要损失,并且即使在低 NP 浓度下也具有显著的光热响应。还分析了溶剂和 NP 浓度变化产生的影响。结果表明,壳层的特性控制着光热效应和胶体分散体的光学性质。由于二氧化硅壳的存在极大地增强了添加货物分子或探针的可能性,因此这些胶体在生物医学治疗、传感应用、远程驱动和其他技术应用方面具有很高的应用价值。