School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel.
Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France.
Phys Rev Lett. 2022 Mar 4;128(9):098002. doi: 10.1103/PhysRevLett.128.098002.
The conductivity of ionic solutions is arguably their most important trait, being widely used in electrochemical, biochemical, and environmental applications. The Debye-Hückel-Onsager theory successfully predicts the conductivity at very low ionic concentrations of up to a few millimolars, but there is no well-established theory applicable at higher concentrations. We study the conductivity of ionic solutions using a stochastic density functional theory, paired with a modified Coulomb interaction that accounts for the hard-core repulsion between the ions. The modified potential suppresses unphysical, short-range electrostatic interactions, which are present in the Debye-Hückel-Onsager theory. Our results for the conductivity show very good agreement with experimental data up to 3 molars, without any fit parameters. We provide a compact expression for the conductivity, accompanied by a simple analytical approximation.
离子溶液的电导率可以说是它们最重要的特性,在电化学、生物化学和环境应用中被广泛使用。德拜-休克尔-昂萨格理论成功地预测了低至几毫摩尔的非常低离子浓度下的电导率,但对于更高浓度的情况,没有一个完善的理论适用。我们使用随机密度泛函理论研究离子溶液的电导率,该理论与修正的库仑相互作用相结合,该相互作用考虑了离子之间的硬芯排斥。修正后的势抑制了德拜-休克尔-昂萨格理论中存在的非物理的短程静电相互作用。我们的电导率结果与实验数据非常吻合,在 3 摩尔以内没有任何拟合参数。我们提供了一个简洁的电导率表达式,以及一个简单的解析近似。