Suppr超能文献

基于靶核酸序列触发转录的病原体灵敏荧光检测。

Sensitive fluorescence detection of pathogens based on target nucleic acid sequence-triggered transcription.

机构信息

Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.

Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.

出版信息

Talanta. 2022 Jun 1;243:123352. doi: 10.1016/j.talanta.2022.123352. Epub 2022 Mar 7.

Abstract

Accurate identification of mutant pathogens derived from genetic polymorphisms is highly desired in clinical diagnosis. However, current detection methods based on Watson-Crick hybridization suffers from false positives due to the cross-reactivity of wild-type sequences. In this study, we developed an accurate identification of mutant pathogens by combining programmable DNAzyme and target nucleic acid sequence-triggered transcription. Single nucleotide variants (SNVs) are the most plentiful type of mutations in the genome. High specificity to discriminate SNV was first achieved by rational design of dual-hairpin DNA structure and DNAzyme's capability of site-specific cleavage. T7 RNA polymerase-mediated transcription amplification was introduced to exponentially increase the sensitivity by encompassing T7 promoter sequence into the dual-hairpin DNA structure. The design of this biosensor is fast and straightforward without many computational steps, and the highly sensitive biosensor can detect not only SNVs but also occasional insertions and large deletions in the genome. We showed that the assay could rapidly detect COVID-19 variant and methicillin-resistant Staphylococcus aureus (MRSA), and the limit of detection is 0.96 copy/μL. The modular design of functional DNA enables this biosensor be easily reconfigured and is useful diagnosis of emerging infectious diseases caused by mutant pathogens.

摘要

在临床诊断中,准确识别源自遗传多态性的突变病原体是非常需要的。然而,目前基于沃森-克里克杂交的检测方法由于野生型序列的交叉反应而存在假阳性。在本研究中,我们通过结合可编程 DNA 酶和靶核酸序列触发转录,开发了一种准确识别突变病原体的方法。单核苷酸变异(SNV)是基因组中最常见的突变类型。通过合理设计双发夹 DNA 结构和 DNA 酶的特异性切割能力,首次实现了对 SNV 的高特异性识别。T7 RNA 聚合酶介导的转录扩增通过将 T7 启动子序列包含在双发夹 DNA 结构中,从而指数增加了灵敏度。该生物传感器的设计快速而简单,无需许多计算步骤,并且高灵敏度的生物传感器不仅可以检测 SNV,还可以检测基因组中的偶尔插入和大片段缺失。我们表明,该测定法可以快速检测 COVID-19 变体和耐甲氧西林金黄色葡萄球菌(MRSA),检测限为 0.96 拷贝/μL。功能 DNA 的模块化设计使该生物传感器易于重新配置,并且对由突变病原体引起的新发传染病的诊断有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验