Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL.
Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL;; University of Florida Health Cancer Center, Gainesville, FL.
Exp Hematol. 2022 Jun;110:20-27. doi: 10.1016/j.exphem.2022.03.008. Epub 2022 Mar 16.
Cytarabine and other chain-terminating nucleoside analogs that damage replication forks in rapidly proliferating cells are a cornerstone of leukemia chemotherapy, yet the outcomes remain unsatisfactory because of resistance and toxicity. Better understanding of DNA damage repair and downstream effector mechanisms in different disease subtypes can guide combination strategies that sensitize leukemia cells to cytarabine without increasing side effects. We have previously found that mutations in DNMT3A, one of the most commonly mutated genes in acute myeloid leukemia and associated with poor prognosis, predisposed cells to DNA damage and cell killing by cytarabine, cladribine, and other nucleoside analogs, which coincided with PARP1 dysfunction and DNA repair defect (Venugopal K, Feng Y, Nowialis P, et al. Clin Cancer Res 2022;28:756-769). In this article, we first overview DNA repair mechanisms that remove aberrant chain-terminating nucleotides as determinants of sensitivity or resistance to cytarabine and other nucleoside analogs. Next, we discuss PARP inhibition as a rational strategy to increase cytarabine efficacy in cells without DNMT3A mutations, while considering the implications of PARP inhibitor resistance for promoting clonal hematopoiesis. Finally, we examine the utility of p53 potentiators to boost leukemia cell killing by cytarabine in the context of mutant DNMT3A. Systematic profiling of DNA damage repair proficiency has the potential to uncover subtype-specific therapeutic dependencies in AML.
阿糖胞苷和其他链终止核苷类似物会破坏快速增殖细胞中的复制叉,是白血病化疗的基石,但由于耐药性和毒性,治疗效果仍不理想。更好地了解不同疾病亚型中的 DNA 损伤修复和下游效应机制,可以指导联合策略,使白血病细胞对阿糖胞苷敏感,而不增加副作用。我们之前发现,DNMT3A 基因突变(急性髓系白血病中最常见的基因突变之一,与预后不良相关)使细胞容易受到阿糖胞苷、克拉屈滨和其他核苷类似物的 DNA 损伤和细胞杀伤,这与 PARP1 功能障碍和 DNA 修复缺陷有关(Venugopal K, Feng Y, Nowialis P, et al. Clin Cancer Res 2022;28:756-769)。在本文中,我们首先概述了去除异常链终止核苷酸的 DNA 修复机制,这些机制决定了对阿糖胞苷和其他核苷类似物的敏感性或耐药性。接下来,我们讨论了 PARP 抑制作为一种增加无 DNMT3A 突变细胞中阿糖胞苷疗效的合理策略,同时考虑了 PARP 抑制剂耐药性对促进克隆性造血的影响。最后,我们研究了 p53 增强剂在突变型 DNMT3A 背景下增强阿糖胞苷对白血病细胞杀伤作用的应用。系统分析 DNA 损伤修复能力有可能揭示 AML 中特定亚型的治疗依赖性。