Fels Cancer Institute for Personalized Medicine and Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
Nencki Institute of Experimental Biology, Warsaw, Poland.
Cancer Res. 2021 Oct 1;81(19):5089-5101. doi: 10.1158/0008-5472.CAN-20-3761. Epub 2021 Jul 2.
Somatic variants in and are founding mutations in hematological malignancies that affect the epigenetic regulation of DNA methylation. Mutations in both genes often co-occur with activating mutations in genes encoding oncogenic tyrosine kinases such as , and , or with mutations affecting related signaling pathways such as and . Here, we show that and mutations exert divergent roles in regulating DNA repair activities in leukemia cells expressing these oncogenes. Malignant TET2-deficient cells displayed downregulation of BRCA1 and LIG4, resulting in reduced activity of BRCA1/2-mediated homologous recombination (HR) and DNA-PK-mediated non-homologous end-joining (D-NHEJ), respectively. TET2-deficient cells relied on PARP1-mediated alternative NHEJ (Alt-NHEJ) for protection from the toxic effects of spontaneous and drug-induced DNA double-strand breaks. Conversely, DNMT3A-deficient cells favored HR/D-NHEJ owing to downregulation of PARP1 and reduction of Alt-NHEJ. Consequently, malignant TET2-deficient cells were sensitive to PARP inhibitor (PARPi) treatment and , whereas DNMT3A-deficient cells were resistant. Disruption of TET2 dioxygenase activity or TET2-Wilms' tumor 1 (WT1)-binding ability was responsible for DNA repair defects and sensitivity to PARPi associated with TET2 deficiency. Moreover, mutation or deletion of mimicked the effect of mutation on DSB repair activity and sensitivity to PARPi. Collectively, these findings reveal that and mutations may serve as biomarkers of synthetic lethality triggered by PARPi, which should be explored therapeutically. SIGNIFICANCE: and mutations affect distinct DNA repair mechanisms and govern the differential sensitivities of oncogenic tyrosine kinase-positive malignant hematopoietic cells to PARP inhibitors.
和 中的体细胞突变是影响 DNA 甲基化表观遗传调控的血液系统恶性肿瘤的创始突变。这两个基因的突变通常与编码致癌酪氨酸激酶的基因中的激活突变共同发生,如 、 和 ,或与影响相关信号通路的突变共同发生,如 和 。在这里,我们表明,在表达这些致癌基因的白血病细胞中,和 突变在调节 DNA 修复活性方面发挥着不同的作用。恶性 TET2 缺陷细胞表现出 BRCA1 和 LIG4 的下调,导致 BRCA1/2 介导的同源重组(HR)和 DNA-PK 介导的非同源末端连接(D-NHEJ)的活性分别降低。TET2 缺陷细胞依赖于 PARP1 介导的替代 NHEJ(Alt-NHEJ)来保护自身免受自发和药物诱导的 DNA 双链断裂的毒性影响。相反,DNMT3A 缺陷细胞由于 PARP1 的下调和 Alt-NHEJ 的减少而有利于 HR/D-NHEJ。因此,恶性 TET2 缺陷细胞对 PARP 抑制剂(PARPi)治疗敏感,而 DNMT3A 缺陷细胞则耐药。TET2 双加氧酶活性或 TET2-Wilms 肿瘤 1(WT1)结合能力的破坏是导致 TET2 缺陷与 DNA 修复缺陷和对 PARPi 敏感性相关的原因。此外,突变或缺失 模拟了 突变对 DSB 修复活性和对 PARPi 敏感性的影响。总之,这些发现表明,和 突变可能作为 PARPi 触发的合成致死性的生物标志物,这值得在治疗上进行探索。
和 突变影响不同的 DNA 修复机制,并决定了致癌性酪氨酸激酶阳性恶性造血细胞对 PARP 抑制剂的不同敏感性。