Suppr超能文献

肌腱内的束状弹性蛋白有助于跨肌腱类型和物种的弹性应力响应的幅度和模量梯度。

Fascicular elastin within tendon contributes to the magnitude and modulus gradient of the elastic stress response across tendon type and species.

机构信息

Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, MSC: 1185-208-125, St. Louis, MO 63130, United States.

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, United States.

出版信息

Acta Biomater. 2023 Jun;163:91-105. doi: 10.1016/j.actbio.2022.03.025. Epub 2022 Mar 16.

Abstract

Elastin, the main component of elastic fibers, has been demonstrated to significantly influence tendon mechanics using both elastin degradation studies and elastinopathic mouse models. However, it remains unclear how prior results differ between species and functionally distinct tendons and, in particular, how results translate to human tendon. Differences in function between fascicular and interfascicular elastin are also yet to be fully elucidated. Therefore, this study evaluated the quantity, structure, and mechanical contribution of elastin in functionally distinct tendons across species. Tendons with an energy-storing function had slightly more elastin content than tendons with a positional function, and human tendon had at least twice the elastin content of other species. While distinctions in the organization of elastic fibers between fascicles and the interfascicular matrix were observed, differences in structural arrangement of the elastin network between species and tendon type were limited. Mechanical testing paired with enzyme-induced elastin degradation was used to evaluate the contribution of elastin to tendon mechanics. Across all tendons, elastin degradation affected the elastic stress response by decreasing stress values while increasing the modulus gradient of the stress-strain curve. Only the contributions of elastin to viscoelastic properties varied between tendon type and species, with human tendon and energy-storing tendon being more affected. These data suggest that fascicular elastic fibers contribute to the tensile mechanical response of tendon, likely by regulating collagen engagement under load. Results add to prior findings and provide evidence for a more mechanistic understanding of the role of elastic fibers in tendon. STATEMENT OF SIGNIFICANCE: Elastin has previously been shown to influence the mechanical properties of tendon, and degraded or abnormal elastin networks caused by aging or disease may contribute to pain and an increased risk of injury. However, prior work has not fully determined how elastin contributes differently to tendons with varying functional demands, as well as within distinct regions of tendon. This study determined the effects of elastin degradation on the tensile elastic and viscoelastic responses of tendons with varying functional demands, hierarchical structures, and elastin content. Moreover, volumetric imaging and protein quantification were used to thoroughly characterize the elastin network in each distinct tendon. The results presented herein can inform tendon-specific strategies to maintain or restore native properties in elastin-degraded tissue.

摘要

弹性蛋白是弹性纤维的主要成分,已有研究表明,弹性蛋白的降解研究和弹性蛋白病小鼠模型都显著影响肌腱力学。然而,目前尚不清楚不同物种和功能不同的肌腱之间的先前结果有何不同,特别是这些结果如何转化为人类肌腱。束状和束间弹性蛋白之间的功能差异也尚未完全阐明。因此,本研究评估了不同物种功能不同的肌腱中弹性蛋白的数量、结构和力学贡献。具有储能功能的肌腱中的弹性蛋白含量略高于具有定位功能的肌腱,而人类肌腱中的弹性蛋白含量至少是其他物种的两倍。虽然观察到束状和束间基质之间弹性纤维的组织学差异,但物种和肌腱类型之间弹性蛋白网络的结构排列差异有限。机械测试与酶诱导的弹性蛋白降解相结合,用于评估弹性蛋白对肌腱力学的贡献。在所有肌腱中,弹性蛋白降解通过降低应力值和增加应力-应变曲线的模量梯度来影响弹性应力响应。只有肌腱类型和物种之间弹性蛋白对粘弹性性质的贡献有所不同,人类肌腱和储能肌腱受影响更大。这些数据表明,束状弹性纤维可能通过调节负载下的胶原结合来影响肌腱的拉伸力学响应。结果增加了先前的发现,并为弹性纤维在肌腱中的作用提供了更具机制性的理解。

意义声明

弹性蛋白先前已被证明会影响肌腱的机械性能,而老化或疾病引起的降解或异常弹性蛋白网络可能导致疼痛和受伤风险增加。然而,先前的工作尚未完全确定弹性蛋白如何在具有不同功能需求的肌腱中以及在肌腱的不同区域中发挥不同的作用。本研究确定了弹性蛋白降解对具有不同功能需求、分层结构和弹性蛋白含量的肌腱的拉伸弹性和粘弹性响应的影响。此外,体积成像和蛋白质定量用于彻底表征每个不同肌腱中的弹性蛋白网络。本文介绍的结果可为特定于肌腱的策略提供信息,以维持或恢复弹性蛋白降解组织中的天然特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验