Suppr超能文献

利用即时学习模型更新方法的便携式光谱技术提高猪肉中TVB-N 的预测。

Improving TVB-N prediction in pork using portable spectroscopy with just-in-time learning model updating method.

机构信息

College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.

College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.

出版信息

Meat Sci. 2022 Jun;188:108801. doi: 10.1016/j.meatsci.2022.108801. Epub 2022 Mar 14.

Abstract

Near infrared spectroscopy (NIR) technology is an effective method for nondestructive prediction of total volatile basic nitrogen (TVB-N) in pork. However, the NIR models lack robustness and often fail when used on a new batch. To handle the problem and obtain better prediction performance, a model updating method based on just-in-time learning (JITL) was proposed in this study. A comprehensive similarity criterion considering both input (spectra) and output (TVB-N content) information was designed. Combining a defined similarity factor, the most relevant samples to new batch samples were selected and a local least square support vector machine model was established in real time based on the selected samples. The results showed that the models updated with JITL approach kept a high predictive performance on new independent batch with prediction error decreasing from 2.95 to 1.60 mg/100 g. The robust models made on selected similar samples combined with JITL model updating strategy can support to make NIR spectroscopy a preferred choice for non-destructive assessment of quality features in pork meat.

摘要

近红外光谱(NIR)技术是一种用于无损预测猪肉中总挥发性碱性氮(TVB-N)的有效方法。然而,NIR 模型缺乏稳健性,并且在用于新批次时经常失败。为了解决这个问题并获得更好的预测性能,本研究提出了一种基于即时学习(JITL)的模型更新方法。设计了一种综合相似度标准,同时考虑输入(光谱)和输出(TVB-N 含量)信息。通过定义相似度因子,选择与新批次样本最相关的样本,并基于所选样本实时建立局部最小二乘支持向量机模型。结果表明,采用 JITL 方法更新的模型在新的独立批次上保持了较高的预测性能,预测误差从 2.95 降至 1.60mg/100g。基于选择的相似样本建立的稳健模型与 JITL 模型更新策略相结合,可以支持将近红外光谱技术作为无损评估猪肉质量特征的首选方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验