Suppr超能文献

一项整合的计算机模拟研究,以发现局灶节段性肾小球硬化症致病性的关键驱动因素。

An Integrative in silico Study to Discover Key Drivers in Pathogenicity of Focal and Segmental Glomerulosclerosis.

作者信息

Gholaminejad Alieh, Ghaeidamini Maryam, Simal-Gandara Jesus, Roointan Amir

机构信息

Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Science Faculty, University of Vigo, Ourense, Spain.

出版信息

Kidney Blood Press Res. 2022;47(6):410-422. doi: 10.1159/000524133. Epub 2022 Mar 18.

Abstract

BACKGROUND

Focal and segmental glomerulosclerosis (FSGS) is a clinical-pathologic condition marked by segmental and localized glomerular damages. Despite investigations, the molecular mechanisms behind FSGS development remain to be more clarified. By a comprehensive analysis of an FSGS-related array set, the aim of this study was to unravel the top pathways and molecules involved in the pathogenesis of this disorder.

METHODS

FSGS-related microarray dataset (GSE129973) from the Gene Expression Omnibus database was quality checked, analyzed, and its differentially expressed genes (DEGs) (log2 fold change > 1) were used for the construction of a protein-protein interaction (PPI) network (STRING). The degree of centrality was considered to select the hub molecules in the network. The weighted gene co-expression network analysis (WGCNA) was utilized to construct co-expression modules. Hub molecules were selected based on module membership and gene significance values in the disease's most correlated module. After spotting the key molecules considering both strategies, their expression pattern was checked in other FSGS microarray datasets. Gene ontology and Reactome pathway enrichment analyses were performed on the DEGs of the related module.

RESULTS

After quality checking, normalization, and analysis of the dataset, 5,296 significant DEGs, including 2,469 upregulated and 2,827 downregulated DEGs were identified. The WGCNA algorithm clustered the DEGs into nine independent co-expression modules. The disease most correlated module (black module) was recognized and considered for further enrichment analysis. The immune system, cell cycle, and vesicle-mediated transports were among the top enriched terms for the identified module's DEGs. The immune system, cell cycle, and vesicle-mediated transports were among the top enriched terms for the black module's DEGs. The key molecules (BMP-2 and COL4A1) were identified as common hub molecules extracted from the two methods of PPI and the co-expressed networks. The two identified key molecules were validated in other FSGS datasets, where a similar pattern of expression was observed for both the genes.

CONCLUSIONS

Two hub molecules (BMP-2 and COL4A) and some pathways (vesicle-mediated transport) were recognized as potential players in the pathogenesis of FSGS.

摘要

背景

局灶节段性肾小球硬化(FSGS)是一种以节段性和局限性肾小球损伤为特征的临床病理状态。尽管进行了诸多研究,但FSGS发生发展背后的分子机制仍有待进一步阐明。通过对一个与FSGS相关的阵列数据集进行全面分析,本研究旨在揭示参与该疾病发病机制的主要通路和分子。

方法

对来自基因表达综合数据库的FSGS相关微阵列数据集(GSE129973)进行质量检查、分析,并将其差异表达基因(DEGs)(log2倍数变化>1)用于构建蛋白质-蛋白质相互作用(PPI)网络(STRING)。根据中心性程度来选择网络中的枢纽分子。利用加权基因共表达网络分析(WGCNA)构建共表达模块。基于模块成员关系和疾病最相关模块中的基因显著性值来选择枢纽分子。在综合考虑两种策略确定关键分子后,在其他FSGS微阵列数据集中检查它们的表达模式。对相关模块的DEGs进行基因本体和Reactome通路富集分析。

结果

在对数据集进行质量检查、标准化和分析后,共鉴定出5296个显著的DEGs,其中包括2469个上调的DEGs和2827个下调的DEGs。WGCNA算法将DEGs聚类为9个独立的共表达模块。识别出与疾病最相关的模块(黑色模块)并对其进行进一步的富集分析。免疫系统、细胞周期和囊泡介导的转运是所识别模块DEGs中富集程度最高的术语之一。免疫系统、细胞周期和囊泡介导的转运也是黑色模块DEGs中富集程度最高的术语之一。关键分子(骨形态发生蛋白-2和IV型胶原α1链)被确定为从PPI和共表达网络这两种方法中提取的共同枢纽分子。在其他FSGS数据集中验证了这两个已鉴定的关键分子,在这些数据集中观察到这两个基因具有相似的表达模式。

结论

两个枢纽分子(骨形态发生蛋白-2和IV型胶原)和一些通路(囊泡介导的转运)被认为是FSGS发病机制中的潜在参与者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验