Suppr超能文献

三维摄影定量评估额缝早闭的严重程度。

3D Photography to Quantify the Severity of Metopic Craniosynostosis.

机构信息

Department of Plastic Surgery, UPMC Children's Hospital, Pittsburgh, PA, United States.

School of Computing, University of Utah, Salt Lake City, UT, United States.

出版信息

Cleft Palate Craniofac J. 2023 Aug;60(8):971-979. doi: 10.1177/10556656221087071. Epub 2022 Mar 21.

Abstract

This study aims to determine the utility of 3D photography for evaluating the severity of metopic craniosynostosis (MCS) using a validated, supervised machine learning (ML) algorithm. This single-center retrospective cohort study included patients who were evaluated at our tertiary care center for MCS from 2016 to 2020 and underwent both head CT and 3D photography within a 2-month period. The analysis method builds on our previously established ML algorithm for evaluating MCS severity using skull shape from CT scans. In this study, we regress the model to analyze 3D photographs and correlate the severity scores from both imaging modalities. 14 patients met inclusion criteria, 64.3% male (n = 9). The mean age in years at 3D photography and CT imaging was 0.97 and 0.94, respectively. Ten patient images were obtained preoperatively, and 4 patients did not require surgery. The severity prediction of the ML algorithm correlates closely when comparing the 3D photographs to CT bone data (Spearman correlation coefficient [SCC] r = 0.75; Pearson correlation coefficient [PCC] r = 0.82). The results of this study show that 3D photography is a valid alternative to CT for evaluation of head shape in MCS. Its use will provide an objective, quantifiable means of assessing outcomes in a rigorous manner while decreasing radiation exposure in this patient population.

摘要

本研究旨在利用经过验证的、有监督的机器学习(ML)算法,确定 3D 摄影在评估额眶颅缝早闭(MCS)严重程度方面的效用。这项单中心回顾性队列研究纳入了 2016 年至 2020 年期间在我们的三级护理中心接受 MCS 评估且在 2 个月内同时接受头部 CT 和 3D 摄影检查的患者。该分析方法基于我们之前建立的使用 CT 扫描颅骨形状评估 MCS 严重程度的 ML 算法。在本研究中,我们回归模型以分析 3D 照片,并对两种成像方式的严重程度评分进行相关性分析。14 名患者符合纳入标准,其中 64.3%为男性(n=9)。3D 摄影和 CT 成像时的平均年龄分别为 0.97 岁和 0.94 岁。10 名患者的图像为术前获得,4 名患者无需手术。将 ML 算法的严重程度预测与 CT 骨数据进行比较时,相关性非常密切(Spearman 相关系数[SCC]r=0.75;Pearson 相关系数[r=0.82])。本研究结果表明,3D 摄影是评估 MCS 头型的 CT 替代方法,其具有有效性。在该患者群体中,它将为评估结果提供一种客观、可量化的手段,同时减少辐射暴露。

相似文献

1
3D Photography to Quantify the Severity of Metopic Craniosynostosis.
Cleft Palate Craniofac J. 2023 Aug;60(8):971-979. doi: 10.1177/10556656221087071. Epub 2022 Mar 21.
2
The metopic index: an anthropometric index for the quantitative assessment of trigonocephaly from metopic synostosis.
J Neurosurg Pediatr. 2016 Sep;18(3):275-80. doi: 10.3171/2016.2.PEDS15524. Epub 2016 May 6.
3
Quantifying the Severity of Metopic Craniosynostosis Using Unsupervised Machine Learning.
Plast Reconstr Surg. 2023 Feb 1;151(2):396-403. doi: 10.1097/PRS.0000000000009853. Epub 2022 Nov 10.
4
Three-dimensional photography for intraoperative morphometric analysis in metopic craniosynostosis surgery.
Int J Comput Assist Radiol Surg. 2021 Feb;16(2):277-287. doi: 10.1007/s11548-020-02301-0. Epub 2021 Jan 8.
6
Clinical metrics and tools for provider assessment and tracking of trigonocephaly.
J Neurosurg Pediatr. 2023 Apr 7;32(1):82-90. doi: 10.3171/2023.2.PEDS22511. Print 2023 Jul 1.
7
Comparison of Head Shape Outcomes in Metopic Synostosis Using Limited Strip Craniectomy and Open Vault Reconstruction Techniques.
Cleft Palate Craniofac J. 2021 Jun;58(6):669-677. doi: 10.1177/1055665620969294. Epub 2020 Nov 6.
8
A critical eye on metopic craniosynostosis: A retrospective study assessing orbital dysmorphology as a marker of disease.
J Craniomaxillofac Surg. 2024 Jul;52(7):865-871. doi: 10.1016/j.jcms.2024.04.015. Epub 2024 May 3.
9
CranioRate: An Image-Based, Deep-Phenotyping Analysis Toolset and Online Clinician Interface for Metopic Craniosynostosis.
Plast Reconstr Surg. 2024 Jan 1;153(1):112e-119e. doi: 10.1097/PRS.0000000000010452. Epub 2023 Mar 22.

引用本文的文献

1
Artificial Intelligence Applications in Pediatric Craniofacial Surgery.
Diagnostics (Basel). 2025 Mar 25;15(7):829. doi: 10.3390/diagnostics15070829.
2
Non-syndromic craniosynostosis.
Nat Rev Dis Primers. 2025 Apr 10;11(1):24. doi: 10.1038/s41572-025-00607-4.
4
Forehead Shape Analysis following Surgical and Conservative Treatment in Metopic Synostosis: A 3-Dimensional Photogrammetry Analysis.
Plast Reconstr Surg. 2025 Jul 1;156(1):103e-111e. doi: 10.1097/PRS.0000000000011753. Epub 2024 Sep 23.
5
Geometric Morphometric Study on Distinguishing Metopic Craniosynostosis from Metopic Ridging.
Plast Reconstr Surg Glob Open. 2024 Aug 7;12(8):e6034. doi: 10.1097/GOX.0000000000006034. eCollection 2024 Aug.
6
Machine learning applications in craniosynostosis diagnosis and treatment prediction: a systematic review.
Childs Nerv Syst. 2024 Aug;40(8):2535-2544. doi: 10.1007/s00381-024-06409-5. Epub 2024 Apr 22.
7
DeepSSM: A blueprint for image-to-shape deep learning models.
Med Image Anal. 2024 Jan;91:103034. doi: 10.1016/j.media.2023.103034. Epub 2023 Nov 17.
8
Geometric learning and statistical modeling for surgical outcomes evaluation in craniosynostosis using 3D photogrammetry.
Comput Methods Programs Biomed. 2023 Oct;240:107689. doi: 10.1016/j.cmpb.2023.107689. Epub 2023 Jun 25.

本文引用的文献

1
"Validation of Artificial Intelligence Severity Assessment in Metopic Craniosynostosis".
Cleft Palate Craniofac J. 2023 Mar;60(3):274-279. doi: 10.1177/10556656211061021. Epub 2021 Nov 17.
3
Computed tomography associated radiation exposure in children with craniosynostosis.
Childs Nerv Syst. 2021 Aug;37(8):2635-2641. doi: 10.1007/s00381-021-05254-0. Epub 2021 Jun 16.
4
Combining deep learning with 3D stereophotogrammetry for craniosynostosis diagnosis.
Sci Rep. 2020 Sep 18;10(1):15346. doi: 10.1038/s41598-020-72143-y.
5
Accuracy of three-dimensional photogrammetry and cone beam computed tomography based on linear measurements in patients with facial deformities.
Dentomaxillofac Radiol. 2021 Feb 1;50(2):20200001. doi: 10.1259/dmfr.20200001. Epub 2020 Aug 13.
6
Evaluation of Changes in Nasal Projection After Surgically Assisted Rapid Maxillary Expansion With 3dMD Face System.
J Craniofac Surg. 2020 Jul-Aug;31(5):e462-e465. doi: 10.1097/SCS.0000000000006436.
7
Evaluation of soft-tissue changes in young adults treated with the Forsus fatigue-resistant device.
Am J Orthod Dentofacial Orthop. 2020 Apr;157(4):481-489.e2. doi: 10.1016/j.ajodo.2019.05.014.
9
Comparison of Black Bone MRI and 3D-CT in the preoperative evaluation of patients with craniosynostosis.
J Plast Reconstr Aesthet Surg. 2020 Apr;73(4):723-731. doi: 10.1016/j.bjps.2019.11.006. Epub 2019 Nov 27.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验