Suppr超能文献

CBRW:一种基于一维随机游走的可撤销生物特征模板生成新方法。

CBRW: a novel approach for cancelable biometric template generation based on 1-D random walk.

作者信息

Kumar Nitin

机构信息

National Institute of Technology, Uttarakhand, India.

出版信息

Appl Intell (Dordr). 2022;52(13):15417-15435. doi: 10.1007/s10489-022-03215-x. Epub 2022 Mar 15.

Abstract

Cancelable Biometric is a challenging research field in which security of an original biometric image is ensured by transforming the original biometric into another irreversible domain. Several approaches have been suggested in literature for generating cancelable biometric templates. In this paper, two novel and simple cancelable biometric template generation methods based on Random Walk (CBRW) have been proposed. By employing random walk and other steps given in the proposed two algorithms and , the original biometric is transformed into a cancelable template. The performance of the proposed methods is compared with other state-of-the-art methods. Experiments have been performed on eight publicly available gray and color datasets i.e. CP (ear) (gray and color), UTIRIS (iris) (gray and color), ORL (face) (gray), IIT Delhi (iris) (gray and color), and AR (face) (color). Performance of the generated templates is measured in terms of Correlation Coefficient (Cr), Root Mean Square Error (RMSE), Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), Mean Absolute Error (MAE), Number of Pixel Change Rate (NPCR), and Unified Average Changing Intensity (UACI). By experimental results, it has been proved that proposed methods are superior than other state-of-the-art methods in qualitative as well as quantitative analysis. Furthermore, CBRW performs better on both gray as well as color images.

摘要

可取消生物特征识别是一个具有挑战性的研究领域,通过将原始生物特征转换到另一个不可逆域来确保原始生物特征图像的安全性。文献中已经提出了几种生成可取消生物特征模板的方法。本文提出了两种基于随机游走的新颖且简单的可取消生物特征模板生成方法(CBRW)。通过在所提出的两种算法中采用随机游走和其他步骤,将原始生物特征转换为可取消模板。将所提出方法的性能与其他现有方法进行了比较。在八个公开可用的灰度和彩色数据集上进行了实验,即CP(耳朵)(灰度和彩色)、UTIRIS(虹膜)(灰度和彩色)、ORL(面部)(灰度)、印度理工学院德里分校(虹膜)(灰度和彩色)以及AR(面部)(彩色)。根据相关系数(Cr)、均方根误差(RMSE)、峰值信噪比(PSNR)、结构相似性(SSIM)、平均绝对误差(MAE)、像素变化率(NPCR)和统一平均变化强度(UACI)来衡量生成模板的性能。实验结果证明,所提出的方法在定性和定量分析方面均优于其他现有方法。此外,CBRW在灰度图像和彩色图像上的表现都更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0509/8923695/b569bebcd22e/10489_2022_3215_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验