Suppr超能文献

抛物律下具有弱非局部非线性的时间分数阶共振非线性薛定谔方程的多个孤子和 rogue 波

Multiple lump and rogue wave for time fractional resonant nonlinear Schrödinger equation under parabolic law with weak nonlocal nonlinearity.

作者信息

Rizvi Syed T R, Seadawy Aly R, Ali K, Younis M, Ashraf M A

机构信息

Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.

Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.

出版信息

Opt Quantum Electron. 2022;54(4):212. doi: 10.1007/s11082-022-03606-x. Epub 2022 Mar 13.

Abstract

This article retrieve lump, lump with one kink and rogue wave soliton for the time fractional resonant nonlinear Schrödinger equation with parabolic law having weak nonlocal nonlinearity. According to theory of dynamical systems, Schrödinger equation may be converted into plane systems. We use Hirota bilinear method to obtained these solutions. At the end, we present graphical representation of our results in various dimensions.

摘要

本文求解了具有弱非局部非线性抛物律的时间分数共振非线性薛定谔方程的孤子、单扭结孤子和 rogue 波孤子。根据动力系统理论,薛定谔方程可转化为平面系统。我们使用 Hirota 双线性方法得到这些解。最后,我们给出了结果在不同维度下的图形表示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab7/8918080/ebbbaf072a75/11082_2022_3606_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验