Suppr超能文献

用于门诊护理环境中以患者为中心的预约安排重新设计的词嵌入与聚类

Word Embedding and Clustering for Patient-Centered Redesign of Appointment Scheduling in Ambulatory Care Settings.

作者信息

Mohammadi Iman, Mehrabi Saeed, Sutton Bryce, Wu Huanmei

机构信息

Avalere Health, An Inovalon Company, Washington, DC.

Formerly Indiana University, Indianapolis, IN.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:863-871. eCollection 2021.

Abstract

. A key to a more efficient scheduling systems is to ensure appointments are designed to meet patient's needs and to design and simplify appointment scheduling less prone to error. Electronic Health Records (EHR) consist of valuable information about patient characteristics and their healthcare needs. The aim of this study is to utilize information from structured and unstructured EHR data to redesign appointment scheduling in community health clinics. . We used Global Vectors for Word Representation, a word embedding approach, on free text field "scheduler note" to cluster patients into groups based on similarities of reasons for appointment. We then redesigned an appointment scheduling template with new types and durations based on the clusters. We compared the current appointment scheduling system and our proposed system by predicting and evaluating clinic performance measures such as patient time spent in-clinic and number of additional patients to accommodate. . We collected 17,722 encounters of an urban community health clinic in 2014 including 102 unique types recorded in the EHR. Following data processing, word embedding implementation, and clustering, appointment types were grouped into 10 clusters. The proposed scheduling template could open space to see overall an additional 716 patients per year and decrease patient in-clinic time by 3.6 minutes on average (p-value<0.0001). . We found word embedding, that is an NLP approach, can be used to extract information from schedulers notes for improving scheduling systems. Unsupervised machine learning approach can be applied to simplify appointment scheduling in CHCs. Patient-centered appointment scheduling can be achieved by simplifying and redesigning appointment types and durations that could improve performance measures, such as increasing availability of time and patient satisfaction.

摘要

一个更高效的预约系统的关键在于确保预约安排能够满足患者需求,并设计和简化不易出错的预约流程。电子健康记录(EHR)包含有关患者特征及其医疗保健需求的宝贵信息。本研究的目的是利用结构化和非结构化EHR数据中的信息,重新设计社区健康诊所的预约安排。我们使用词表示的全局向量(一种词嵌入方法)对自由文本字段“调度员备注”进行处理,以便根据预约原因的相似性将患者聚类分组。然后,我们根据这些聚类重新设计了具有新类型和时长的预约安排模板。我们通过预测和评估诸如患者在诊所花费的时间以及可容纳的额外患者数量等诊所绩效指标,对当前的预约系统和我们提出的系统进行了比较。我们收集了2014年一家城市社区健康诊所的17722次诊疗记录,其中包括EHR中记录的102种独特类型。经过数据处理、词嵌入实现和聚类后,预约类型被分为10个聚类。所提出的调度模板每年总体上可为额外716名患者提供就诊空间,平均减少患者在诊所的时间3.6分钟(p值<0.0001)。我们发现词嵌入这种自然语言处理方法可用于从调度员备注中提取信息以改进预约系统。无监督机器学习方法可应用于简化社区健康中心的预约安排。以患者为中心的预约安排可以通过简化和重新设计预约类型及时长来实现,这可以改善绩效指标,如增加时间可用性和患者满意度。

相似文献

5
A dynamic approach for outpatient scheduling.一种门诊预约的动态方法。
J Med Econ. 2017 Aug;20(8):786-798. doi: 10.1080/13696998.2017.1318755. Epub 2017 May 15.
8
Data Analytics and Modeling for Appointment No-show in Community Health Centers.社区卫生中心预约未到诊的数据分析与建模
J Prim Care Community Health. 2018 Jan-Dec;9:2150132718811692. doi: 10.1177/2150132718811692.
10
The Development of Patient Scheduling Groups for an Effective Appointment System.用于有效预约系统的患者排班分组的开发。
Appl Clin Inform. 2016 Jan 27;7(1):43-58. doi: 10.4338/ACI-2015-08-RA-0097. eCollection 2016.

本文引用的文献

1
Data Analytics and Modeling for Appointment No-show in Community Health Centers.社区卫生中心预约未到诊的数据分析与建模
J Prim Care Community Health. 2018 Jan-Dec;9:2150132718811692. doi: 10.1177/2150132718811692.
3
Patient Access: Improving Wait Times in a Specialty Clinic.患者就医渠道:改善专科诊所的候诊时间
Health Care Manag (Frederick). 2016 Jan/Mar;35(1):72-79. doi: 10.1097/HCM.0000000000000098.
8
Accessing patient-centered care using the advanced access model.使用先进的预约模式提供以患者为中心的护理。
J Ambul Care Manage. 2009 Jan-Mar;32(1):32-43. doi: 10.1097/01.JAC.0000343122.15467.48.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验