Suppr超能文献

弱监督在心电图数据经济建模中的应用。

Weak Supervision for Affordable Modeling of Electrocardiogram Data.

机构信息

Auton Lab, School of Computer Science, Carnegie Mellon University Pittsburgh, PA, USA.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:536-545. eCollection 2021.

Abstract

Analysing electrocardiograms (ECGs) is an inexpensive and non-invasive, yet powerful way to diagnose heart disease. ECG studies using Machine Learning to automatically detect abnormal heartbeats so far depend on large, manually annotated datasets. While collecting vast amounts of unlabeled data can be straightforward, the point-by-point annotation of abnormal heartbeats is tedious and expensive. We explore the use of multiple weak supervision sources to learn diagnostic models of abnormal heartbeats via human designed heuristics, without using ground truth labels on individual data points. Our work is among the first to define weak supervision sources directly on time series data. Results show that with as few as six intuitive time series heuristics, we are able to infer high quality probabilistic label estimates for over 100,000 heartbeats with little human effort, and use the estimated labels to train competitive classifiers evaluated on held out test data.

摘要

分析心电图(ECG)是一种廉价、非侵入性但功能强大的心脏病诊断方法。使用机器学习自动检测异常心跳的 ECG 研究迄今为止依赖于大型的、手动注释的数据集。虽然收集大量未标记的数据可能很简单,但逐个标记异常心跳是繁琐且昂贵的。我们探索了使用多种弱监督源通过人工设计的启发式方法学习异常心跳的诊断模型,而无需在各个数据点上使用真实标签。我们的工作是首批直接在时间序列数据上定义弱监督源的工作之一。结果表明,仅使用六个直观的时间序列启发式方法,我们就能够以很少的人工努力推断出超过 100,000 个心跳的高质量概率标签估计值,并使用这些估计的标签来训练在保留测试数据上评估的有竞争力的分类器。

相似文献

1
Weak Supervision for Affordable Modeling of Electrocardiogram Data.
AMIA Annu Symp Proc. 2022 Feb 21;2021:536-545. eCollection 2021.
2
ECG analysis using multiple instance learning for myocardial infarction detection.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3348-56. doi: 10.1109/TBME.2012.2213597. Epub 2012 Aug 23.
3
Snuba: Automating Weak Supervision to Label Training Data.
Proceedings VLDB Endowment. 2018 Nov;12(3):223-236. doi: 10.14778/3291264.3291268.
5
A Novel Framework for Motion-Tolerant Instantaneous Heart Rate Estimation by Phase-Domain Multiview Dynamic Time Warping.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2562-2574. doi: 10.1109/TBME.2016.2640309.
6
A deep convolutional neural network model to classify heartbeats.
Comput Biol Med. 2017 Oct 1;89:389-396. doi: 10.1016/j.compbiomed.2017.08.022. Epub 2017 Aug 24.
8
Inferring Generative Model Structure with Static Analysis.
Adv Neural Inf Process Syst. 2017 Dec;30:239-249.
9
Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study.
Lancet Digit Health. 2020 Jul;2(7):e348-e357. doi: 10.1016/S2589-7500(20)30107-2. Epub 2020 Jun 4.
10
Training Complex Models with Multi-Task Weak Supervision.
Proc AAAI Conf Artif Intell. 2019 Jan-Feb;33:4763-4771. doi: 10.1609/aaai.v33i01.33014763.

引用本文的文献

1
Weakly Supervised Classification of Vital Sign Alerts as Real or Artifact.
AMIA Annu Symp Proc. 2023 Apr 29;2022:405-414. eCollection 2022.
2
Interpretable Machine Learning Techniques in ECG-Based Heart Disease Classification: A Systematic Review.
Diagnostics (Basel). 2022 Dec 29;13(1):111. doi: 10.3390/diagnostics13010111.
3
Continuous ECG monitoring should be the heart of bedside AI-based predictive analytics monitoring for early detection of clinical deterioration.
J Electrocardiol. 2023 Jan-Feb;76:35-38. doi: 10.1016/j.jelectrocard.2022.10.011. Epub 2022 Nov 2.
4
Intelligent Clinical Decision Support.
Sensors (Basel). 2022 Feb 12;22(4):1408. doi: 10.3390/s22041408.

本文引用的文献

1
Cross-Modal Data Programming Enables Rapid Medical Machine Learning.
Patterns (N Y). 2020 May 8;1(2). doi: 10.1016/j.patter.2020.100019. Epub 2020 Apr 28.
2
Weak supervision as an efficient approach for automated seizure detection in electroencephalography.
NPJ Digit Med. 2020 Apr 20;3:59. doi: 10.1038/s41746-020-0264-0. eCollection 2020.
3
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
4
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences.
Nat Commun. 2019 Jul 15;10(1):3111. doi: 10.1038/s41467-019-11012-3.
5
6
Data Programming: Creating Large Training Sets, Quickly.
Adv Neural Inf Process Syst. 2016 Dec;29:3567-3575.
7
Snorkel: Rapid Training Data Creation with Weak Supervision.
Proceedings VLDB Endowment. 2017 Nov;11(3):269-282. doi: 10.14778/3157794.3157797.
8
Classification of ECG beats using deep belief network and active learning.
Med Biol Eng Comput. 2018 Oct;56(10):1887-1898. doi: 10.1007/s11517-018-1815-2. Epub 2018 Apr 12.
9
10
ECG-based heartbeat classification for arrhythmia detection: A survey.
Comput Methods Programs Biomed. 2016 Apr;127:144-64. doi: 10.1016/j.cmpb.2015.12.008. Epub 2015 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验