Suppr超能文献

弱监督在心电图数据经济建模中的应用。

Weak Supervision for Affordable Modeling of Electrocardiogram Data.

机构信息

Auton Lab, School of Computer Science, Carnegie Mellon University Pittsburgh, PA, USA.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:536-545. eCollection 2021.

Abstract

Analysing electrocardiograms (ECGs) is an inexpensive and non-invasive, yet powerful way to diagnose heart disease. ECG studies using Machine Learning to automatically detect abnormal heartbeats so far depend on large, manually annotated datasets. While collecting vast amounts of unlabeled data can be straightforward, the point-by-point annotation of abnormal heartbeats is tedious and expensive. We explore the use of multiple weak supervision sources to learn diagnostic models of abnormal heartbeats via human designed heuristics, without using ground truth labels on individual data points. Our work is among the first to define weak supervision sources directly on time series data. Results show that with as few as six intuitive time series heuristics, we are able to infer high quality probabilistic label estimates for over 100,000 heartbeats with little human effort, and use the estimated labels to train competitive classifiers evaluated on held out test data.

摘要

分析心电图(ECG)是一种廉价、非侵入性但功能强大的心脏病诊断方法。使用机器学习自动检测异常心跳的 ECG 研究迄今为止依赖于大型的、手动注释的数据集。虽然收集大量未标记的数据可能很简单,但逐个标记异常心跳是繁琐且昂贵的。我们探索了使用多种弱监督源通过人工设计的启发式方法学习异常心跳的诊断模型,而无需在各个数据点上使用真实标签。我们的工作是首批直接在时间序列数据上定义弱监督源的工作之一。结果表明,仅使用六个直观的时间序列启发式方法,我们就能够以很少的人工努力推断出超过 100,000 个心跳的高质量概率标签估计值,并使用这些估计的标签来训练在保留测试数据上评估的有竞争力的分类器。

相似文献

3
Snuba: Automating Weak Supervision to Label Training Data.Snuba:自动化弱监督以标记训练数据。
Proceedings VLDB Endowment. 2018 Nov;12(3):223-236. doi: 10.14778/3291264.3291268.
6
A deep convolutional neural network model to classify heartbeats.一种用于分类心跳的深度卷积神经网络模型。
Comput Biol Med. 2017 Oct 1;89:389-396. doi: 10.1016/j.compbiomed.2017.08.022. Epub 2017 Aug 24.
10
Training Complex Models with Multi-Task Weak Supervision.使用多任务弱监督训练复杂模型。
Proc AAAI Conf Artif Intell. 2019 Jan-Feb;33:4763-4771. doi: 10.1609/aaai.v33i01.33014763.

本文引用的文献

1
Cross-Modal Data Programming Enables Rapid Medical Machine Learning.跨模态数据编程助力快速医学机器学习。
Patterns (N Y). 2020 May 8;1(2). doi: 10.1016/j.patter.2020.100019. Epub 2020 Apr 28.
3
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
7
Snorkel: Rapid Training Data Creation with Weak Supervision.Snorkel:通过弱监督快速创建训练数据
Proceedings VLDB Endowment. 2017 Nov;11(3):269-282. doi: 10.14778/3157794.3157797.
8
Classification of ECG beats using deep belief network and active learning.基于深度置信网络和主动学习的心电图分类。
Med Biol Eng Comput. 2018 Oct;56(10):1887-1898. doi: 10.1007/s11517-018-1815-2. Epub 2018 Apr 12.
10
ECG-based heartbeat classification for arrhythmia detection: A survey.基于心电图的心律失常检测心跳分类:一项综述。
Comput Methods Programs Biomed. 2016 Apr;127:144-64. doi: 10.1016/j.cmpb.2015.12.008. Epub 2015 Dec 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验