Suppr超能文献

使用深度神经网络在动态心电图中进行心脏病学家级别的心律失常检测和分类。

Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.

机构信息

Department of Computer Science, Stanford University, Stanford, CA, USA.

iRhythm Technologies Inc., San Francisco, CA, USA.

出版信息

Nat Med. 2019 Jan;25(1):65-69. doi: 10.1038/s41591-018-0268-3. Epub 2019 Jan 7.

Abstract

Computerized electrocardiogram (ECG) interpretation plays a critical role in the clinical ECG workflow. Widely available digital ECG data and the algorithmic paradigm of deep learning present an opportunity to substantially improve the accuracy and scalability of automated ECG analysis. However, a comprehensive evaluation of an end-to-end deep learning approach for ECG analysis across a wide variety of diagnostic classes has not been previously reported. Here, we develop a deep neural network (DNN) to classify 12 rhythm classes using 91,232 single-lead ECGs from 53,549 patients who used a single-lead ambulatory ECG monitoring device. When validated against an independent test dataset annotated by a consensus committee of board-certified practicing cardiologists, the DNN achieved an average area under the receiver operating characteristic curve (ROC) of 0.97. The average F score, which is the harmonic mean of the positive predictive value and sensitivity, for the DNN (0.837) exceeded that of average cardiologists (0.780). With specificity fixed at the average specificity achieved by cardiologists, the sensitivity of the DNN exceeded the average cardiologist sensitivity for all rhythm classes. These findings demonstrate that an end-to-end deep learning approach can classify a broad range of distinct arrhythmias from single-lead ECGs with high diagnostic performance similar to that of cardiologists. If confirmed in clinical settings, this approach could reduce the rate of misdiagnosed computerized ECG interpretations and improve the efficiency of expert human ECG interpretation by accurately triaging or prioritizing the most urgent conditions.

摘要

计算机化心电图(ECG)解释在临床 ECG 工作流程中起着至关重要的作用。广泛可用的数字 ECG 数据和深度学习的算法范例为大幅提高自动化 ECG 分析的准确性和可扩展性提供了机会。然而,以前尚未报道过对端到端深度学习方法进行全面评估,该方法可用于分析各种诊断类别中的 ECG。在这里,我们使用来自 53549 名使用单导联动态心电图监测设备的患者的 91232 个单导联 ECG 来开发深度神经网络(DNN)对 12 个节律类别进行分类。当根据由具有董事会认证的执业心脏病专家组成的共识委员会注释的独立测试数据集进行验证时,DNN 的平均接收器工作特征曲线(ROC)下面积达到 0.97。DNN 的平均 F 分数(阳性预测值和敏感性的调和平均值)为 0.837,超过了平均心脏病专家的分数(0.780)。在将特异性固定为心脏病专家平均特异性的情况下,DNN 的敏感性超过了所有节律类别的平均心脏病专家敏感性。这些发现表明,端到端深度学习方法可以从单导联 ECG 中分类出广泛的不同心律失常,具有与心脏病专家相似的高诊断性能。如果在临床环境中得到证实,这种方法可以通过准确地对最紧急的情况进行分类或优先排序,从而降低计算机化 ECG 解释的误诊率并提高专家人工 ECG 解释的效率。

相似文献

9
A comprehensive artificial intelligence-enabled electrocardiogram interpretation program.一个全面的人工智能心电图解读程序。
Cardiovasc Digit Health J. 2020 Sep 8;1(2):62-70. doi: 10.1016/j.cvdhj.2020.08.005. eCollection 2020 Sep-Oct.

引用本文的文献

5
Multimodal Deep Learning for ARDS Detection.用于急性呼吸窘迫综合征检测的多模态深度学习
medRxiv. 2025 Aug 12:2025.08.08.25333333. doi: 10.1101/2025.08.08.25333333.

本文引用的文献

1
Detecting atrial fibrillation by deep convolutional neural networks.基于深度卷积神经网络的心房颤动检测
Comput Biol Med. 2018 Feb 1;93:84-92. doi: 10.1016/j.compbiomed.2017.12.007. Epub 2017 Dec 15.
2
A deep convolutional neural network model to classify heartbeats.一种用于分类心跳的深度卷积神经网络模型。
Comput Biol Med. 2017 Oct 1;89:389-396. doi: 10.1016/j.compbiomed.2017.08.022. Epub 2017 Aug 24.
3
Computer-Interpreted Electrocardiograms: Benefits and Limitations.计算机解读心电图:优势与局限。
J Am Coll Cardiol. 2017 Aug 29;70(9):1183-1192. doi: 10.1016/j.jacc.2017.07.723.
8
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验