Suppr超能文献

将患者层面的健康社会决定因素提取到 OMOP 通用数据模型中。

Extracting Patient-level Social Determinants of Health into the OMOP Common Data Model.

机构信息

Division of Biomedical and Health Informatics, UW Medicine, Seattle, Washington.

University of Washington Medicine Research IT, Seattle, Washington.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:989-998. eCollection 2021.

Abstract

Deficiencies in data sharing capabilities limit Social Determinants of Health (SDoH) analysis as part of COVID-19 research. The National COVID Cohort Collaborative (N3C) is an example of an Electronic Health Record (EHR) database of patients tested for COVID-19 that could benefit from a SDoH elements framework that captures various screening instruments in EHR data warehouse systems. This paper uses the University of Washington Enterprise Data Warehouse (a data contributor to N3C) to demonstrate how SDoH can be represented and managed to be made available within an OMOP common data model. We found that these data varied by type of social determinants data and where it was collected, in the time period that it was collected, and in how it was represented.

摘要

数据共享能力的不足限制了 COVID-19 研究中社会决定因素(SDoH)分析的发展。国家 COVID 队列协作(N3C)是一个电子健康记录(EHR)数据库的例子,其中包含了接受 COVID-19 检测的患者,可以从社会决定因素元素框架中受益,该框架可以在 EHR 数据仓库系统中捕获各种筛查工具。本文使用华盛顿大学企业数据仓库(N3C 的一个数据贡献者)来说明如何表示 SDoH,并使其在 OMOP 通用数据模型中可用。我们发现,这些数据因社会决定因素数据的类型以及收集地点、收集时间以及表示方式而有所不同。

相似文献

引用本文的文献

2
Clinical Research Informatics: a Decade-in-Review.临床研究信息学:十年回顾
Yearb Med Inform. 2024 Aug;33(1):127-142. doi: 10.1055/s-0044-1800732. Epub 2025 Apr 8.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验