IBM Almaden Research Center, San Jose, CA.
AMIA Annu Symp Proc. 2022 Feb 21;2021:571-580. eCollection 2021.
Patient Electronic Health Records (EHRs) typically contain a substantial amount of data, which can lead to information overload for clinicians, especially in high-throughput fields like radiology. Thus, it would be beneficial to have a mechanism for summarizing the most clinically relevant patient information pertinent to the needs of clinicians. This study presents a novel approach for the curation of clinician EHR data preference information towards the ultimate goal of providing robust EHR summarization. Clinicians first provide a list of data items of interest across multiple EHR categories. Since this data is manually dictated, it has limited coverage and may not cover all the important terms relevant to a concept. To address this problem, we have developed a knowledge-driven semantic concept expansion approach by leveraging rich biomedical knowledge from the UMLS. The approach expands 1094 seed concepts to 22,325 concepts with 92.69% of the expanded concepts identified as relevant by clinicians.
患者电子健康记录 (EHR) 通常包含大量数据,这可能导致临床医生信息过载,特别是在放射科等高通量领域。因此,有一个机制来总结与临床医生需求相关的最具临床意义的患者信息将是有益的。本研究提出了一种新的方法,用于管理临床医生 EHR 数据偏好信息,最终目标是提供强大的 EHR 总结。临床医生首先提供一份跨多个 EHR 类别感兴趣的数据项列表。由于这些数据是手动规定的,因此它的覆盖范围有限,并且可能无法涵盖与概念相关的所有重要术语。为了解决这个问题,我们开发了一种知识驱动的语义概念扩展方法,利用 UMLS 中的丰富生物医学知识。该方法将 1094 个种子概念扩展到 22325 个概念,其中 92.69%的扩展概念被临床医生确定为相关。