Suppr超能文献

整合多模态电子健康记录进行诊断预测。

Integrating Multimodal Electronic Health Records for Diagnosis Prediction.

机构信息

Department of Computer Science and Engineering, University at Buffalo, NY, USA.

College of Information Sciences and Technology, Pennsylvania State University, PA, USA.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:726-735. eCollection 2021.

Abstract

Diagnosis prediction aims to predict the patient's future diagnosis based on their Electronic Health Records (EHRs). Most existing works adopt recurrent neural networks (RNNs) to model the sequential EHR data. However, they mainly utilize medical codes and ignore other useful information such as patients' clinical features and demographics. We proposed a new model called MDP to augment the prediction performance by integrating the multimodal clinical data. MDP learns the clinical feature representation by adjusting the weights of clinical features based on a patient's current health condition and demographics. Also, the clinical feature representation, diagnosis codes representation and the demographic embedding are integrated to perform the prediction task. Experiments on a real-world dataset demonstrate that MDP outperforms the state-of-the-art methods.

摘要

诊断预测旨在根据患者的电子健康记录 (EHR) 预测患者的未来诊断。大多数现有工作采用循环神经网络 (RNN) 对顺序 EHR 数据进行建模。然而,它们主要利用医疗代码,而忽略了其他有用的信息,如患者的临床特征和人口统计学信息。我们提出了一种名为 MDP 的新模型,通过整合多模态临床数据来提高预测性能。MDP 通过根据患者当前的健康状况和人口统计学信息调整临床特征的权重来学习临床特征表示。此外,临床特征表示、诊断代码表示和人口统计学嵌入被整合在一起执行预测任务。在真实数据集上的实验表明,MDP 优于最先进的方法。

相似文献

6
Graph Neural Network-Based Diagnosis Prediction.基于图神经网络的诊断预测。
Big Data. 2020 Oct;8(5):379-390. doi: 10.1089/big.2020.0070. Epub 2020 Aug 12.
10
HealthNet: A Health Progression Network via Heterogeneous Medical Information Fusion.
IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):6940-6954. doi: 10.1109/TNNLS.2022.3202305. Epub 2023 Oct 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验