Suppr超能文献

整合多模态电子健康记录进行诊断预测。

Integrating Multimodal Electronic Health Records for Diagnosis Prediction.

机构信息

Department of Computer Science and Engineering, University at Buffalo, NY, USA.

College of Information Sciences and Technology, Pennsylvania State University, PA, USA.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:726-735. eCollection 2021.

Abstract

Diagnosis prediction aims to predict the patient's future diagnosis based on their Electronic Health Records (EHRs). Most existing works adopt recurrent neural networks (RNNs) to model the sequential EHR data. However, they mainly utilize medical codes and ignore other useful information such as patients' clinical features and demographics. We proposed a new model called MDP to augment the prediction performance by integrating the multimodal clinical data. MDP learns the clinical feature representation by adjusting the weights of clinical features based on a patient's current health condition and demographics. Also, the clinical feature representation, diagnosis codes representation and the demographic embedding are integrated to perform the prediction task. Experiments on a real-world dataset demonstrate that MDP outperforms the state-of-the-art methods.

摘要

诊断预测旨在根据患者的电子健康记录 (EHR) 预测患者的未来诊断。大多数现有工作采用循环神经网络 (RNN) 对顺序 EHR 数据进行建模。然而,它们主要利用医疗代码,而忽略了其他有用的信息,如患者的临床特征和人口统计学信息。我们提出了一种名为 MDP 的新模型,通过整合多模态临床数据来提高预测性能。MDP 通过根据患者当前的健康状况和人口统计学信息调整临床特征的权重来学习临床特征表示。此外,临床特征表示、诊断代码表示和人口统计学嵌入被整合在一起执行预测任务。在真实数据集上的实验表明,MDP 优于最先进的方法。

相似文献

1
Integrating Multimodal Electronic Health Records for Diagnosis Prediction.
AMIA Annu Symp Proc. 2022 Feb 21;2021:726-735. eCollection 2021.
2
Fusion of sequential visits and medical ontology for mortality prediction.
J Biomed Inform. 2022 Mar;127:104012. doi: 10.1016/j.jbi.2022.104012. Epub 2022 Feb 7.
3
Incorporating medical code descriptions for diagnosis prediction in healthcare.
BMC Med Inform Decis Mak. 2019 Dec 19;19(Suppl 6):267. doi: 10.1186/s12911-019-0961-2.
4
Representation learning for clinical time series prediction tasks in electronic health records.
BMC Med Inform Decis Mak. 2019 Dec 17;19(Suppl 8):259. doi: 10.1186/s12911-019-0985-7.
5
MERGE: A Multi-graph Attentive Representation learning framework integrating Group information from similar patients.
Comput Biol Med. 2022 Dec;151(Pt A):106245. doi: 10.1016/j.compbiomed.2022.106245. Epub 2022 Oct 25.
6
Graph Neural Network-Based Diagnosis Prediction.
Big Data. 2020 Oct;8(5):379-390. doi: 10.1089/big.2020.0070. Epub 2020 Aug 12.
7
Interpretable time-aware and co-occurrence-aware network for medical prediction.
BMC Med Inform Decis Mak. 2021 Nov 2;21(1):305. doi: 10.1186/s12911-021-01662-z.
8
TA-RNN: an attention-based time-aware recurrent neural network architecture for electronic health records.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i169-i179. doi: 10.1093/bioinformatics/btae264.
9
LSTM Model for Prediction of Heart Failure in Big Data.
J Med Syst. 2019 Mar 19;43(5):111. doi: 10.1007/s10916-019-1243-3.
10
HealthNet: A Health Progression Network via Heterogeneous Medical Information Fusion.
IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):6940-6954. doi: 10.1109/TNNLS.2022.3202305. Epub 2023 Oct 5.

引用本文的文献

1
Multimodal interpretable data-driven models for early prediction of multidrug resistance using multivariate time series.
Health Inf Sci Syst. 2025 May 7;13(1):35. doi: 10.1007/s13755-025-00351-9. eCollection 2025 Dec.
2
Med-MGF: multi-level graph-based framework for handling medical data imbalance and representation.
BMC Med Inform Decis Mak. 2024 Sep 2;24(1):242. doi: 10.1186/s12911-024-02649-2.
3
Applications of Multimodal Artificial Intelligence in Non-Hodgkin Lymphoma B Cells.
Biomedicines. 2024 Aug 5;12(8):1753. doi: 10.3390/biomedicines12081753.
4
A comprehensive review of machine learning algorithms and their application in geriatric medicine: present and future.
Aging Clin Exp Res. 2023 Nov;35(11):2363-2397. doi: 10.1007/s40520-023-02552-2. Epub 2023 Sep 8.

本文引用的文献

1
GRAM: Graph-based Attention Model for Healthcare Representation Learning.
KDD. 2017 Aug;2017:787-795. doi: 10.1145/3097983.3098126.
2
Multitask learning and benchmarking with clinical time series data.
Sci Data. 2019 Jun 17;6(1):96. doi: 10.1038/s41597-019-0103-9.
3
Doctor AI: Predicting Clinical Events via Recurrent Neural Networks.
JMLR Workshop Conf Proc. 2016 Aug;56:301-318. Epub 2016 Dec 10.
4
Using recurrent neural network models for early detection of heart failure onset.
J Am Med Inform Assoc. 2017 Mar 1;24(2):361-370. doi: 10.1093/jamia/ocw112.
5
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
6
Long short-term memory.
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验