Big Data Institute, Central South University, Changsha, 410083, PR China.
Big Data Institute, Central South University, Changsha, 410083, PR China; School of Computer Science and Engineering, Central South University, Changsha, 410083, PR China.
Comput Biol Med. 2022 Dec;151(Pt A):106245. doi: 10.1016/j.compbiomed.2022.106245. Epub 2022 Oct 25.
It is an important research task in the field of medical big data to predict patient's future health status according to the historical temporal Electronic Health Records (EHRs). Most of the existing deep learning-based medical prediction methods only focus on the patient's individual information. However, due to the sparseness and low quality of EHR data, individual clinical records of single patient often cannot provide complete health information, which severely limits the accuracy of the prediction models. In this paper, we propose a Multi-graph attEntive Representation learning framework integrating Group information from similar patiEnts(MERGE) for medical prediction. In this framework, while capturing the individual patient's temporal characteristics through the individual representation learning module, the group representation leaning module is used to learn group representations of similar patients from different aspects as a supplement, thereby effectively improving the accuracy of patients' representation. We evaluate our method on the MIMIC-III dataset for the task of in-hospital mortality prediction and Xiangya dataset for cardiovascular diseases (CVDs) prediction. The experimental results show that MERGE outperforms the state-of-the-art methods.
根据历史时间电子健康记录 (EHR) 预测患者未来健康状况是医学大数据领域的一项重要研究任务。现有的大多数基于深度学习的医学预测方法仅关注患者的个体信息。然而,由于 EHR 数据的稀疏性和低质量,单个患者的个体临床记录通常无法提供完整的健康信息,这严重限制了预测模型的准确性。在本文中,我们提出了一种多图注意力表示学习框架,该框架通过从相似患者中整合组信息(MERGE)来进行医学预测。在该框架中,通过个体表示学习模块捕获个体患者的时间特征,同时通过群体表示学习模块从不同方面学习相似患者的群体表示作为补充,从而有效地提高患者表示的准确性。我们在 MIMIC-III 数据集上评估了我们的方法,用于住院死亡率预测任务,在 Xiangya 数据集上评估了心血管疾病 (CVDs) 预测任务。实验结果表明,MERGE 优于最先进的方法。