Suppr超能文献

用于高置信度检测 miRNA 的单分子传感器。

Single-Molecule Sensor for High-Confidence Detection of miRNA.

机构信息

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.

Division of Transplant Surgery, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States.

出版信息

ACS Sens. 2022 Apr 22;7(4):1086-1094. doi: 10.1021/acssensors.1c02748. Epub 2022 Mar 21.

Abstract

MicroRNAs (miRNAs) play a crucial role in regulating gene expression and have been linked to many diseases. Therefore, sensitive and accurate detection of disease-linked miRNAs is vital to the emerging revolution in early diagnosis of diseases. While the detection of miRNAs is a challenge due to their intrinsic properties such as small size, high sequence similarity among miRNAs and low abundance in biological fluids, the majority of miRNA-detection strategies involve either target/signal amplification or involve complex sensing designs. In this study, we have developed and tested a DNA-based fluorescence resonance energy transfer (FRET) sensor that enables ultrasensitive detection of a miRNA biomarker (miRNA-342-3p) expressed by triple-negative breast cancer (TNBC) cells. The sensor shows a relatively low FRET state in the absence of a target but it undergoes continuous FRET transitions between low- and high-FRET states in the presence of the target. The sensor is highly specific, has a detection limit down to low femtomolar (fM) without having to amplify the target, and has a large dynamic range (3 orders of magnitude) extending to 300 000 fM. Using this strategy, we demonstrated that the sensor allows detection of miRNA-342-3p in the miRNA-extracts from cancer cell lines and TNBC patient-derived xenografts. Given the simple-to-design hybridization-based detection, the sensing platform developed here can be used to detect a wide range of miRNAs enabling early diagnosis and screening of other genetic disorders.

摘要

微小 RNA(miRNAs)在调控基因表达方面发挥着重要作用,并且与许多疾病有关。因此,对与疾病相关的 miRNAs 进行敏感和准确的检测对于疾病早期诊断的新兴革命至关重要。由于 miRNAs 具有内在特性,例如体积小、miRNAs 之间序列相似性高以及在生物体液中丰度低,因此检测 miRNAs 是一个挑战,但大多数 miRNA 检测策略都涉及靶标/信号放大或涉及复杂的传感设计。在这项研究中,我们开发并测试了一种基于 DNA 的荧光共振能量转移(FRET)传感器,该传感器能够超灵敏地检测三阴性乳腺癌(TNBC)细胞表达的 miRNA 生物标志物(miRNA-342-3p)。该传感器在没有靶标的情况下显示出相对较低的 FRET 状态,但在存在靶标的情况下,它在低 FRET 状态和高 FRET 状态之间持续进行 FRET 转变。该传感器具有高度特异性,无需扩增靶标即可检测到低至皮摩尔(fM)的下限,并且具有 300,000 fM 的大动态范围(3 个数量级)。使用该策略,我们证明了该传感器允许在来自癌细胞系和 TNBC 患者来源异种移植物的 miRNA 提取物中检测 miRNA-342-3p。鉴于基于杂交的简单设计检测,这里开发的传感平台可用于检测广泛的 miRNAs,从而实现早期诊断和其他遗传疾病的筛查。

相似文献

1
Single-Molecule Sensor for High-Confidence Detection of miRNA.
ACS Sens. 2022 Apr 22;7(4):1086-1094. doi: 10.1021/acssensors.1c02748. Epub 2022 Mar 21.
2
Single-Molecule FRET-Based Dynamic DNA Sensor.
ACS Sens. 2021 Mar 26;6(3):1367-1374. doi: 10.1021/acssensors.1c00002. Epub 2021 Mar 15.
3
Target-assisted FRET signal amplification for ultrasensitive detection of microRNA.
Analyst. 2019 Mar 25;144(7):2304-2311. doi: 10.1039/c8an02266f.
5
Logic-signal-based multiplex detection of MiRNAs with high tension hybridization and multiple signal amplification.
Analyst. 2020 Jun 21;145(12):4314-4320. doi: 10.1039/d0an00550a. Epub 2020 May 13.
6
Highly Selective FRET-Aided Single-Molecule Counting of MicroRNAs Labeled by Splinted Ligation.
ACS Sens. 2022 Nov 25;7(11):3409-3415. doi: 10.1021/acssensors.2c01526. Epub 2022 Oct 24.
8
MnO nanosheet-mediated target-binding-induced FRET strategy for multiplexed microRNAs detection and imaging in living cells.
Talanta. 2021 May 1;226:122202. doi: 10.1016/j.talanta.2021.122202. Epub 2021 Feb 6.
9
Multiplexed smFRET Nucleic Acid Sensing Using DNA Nanotweezers.
Biosensors (Basel). 2023 Jan 10;13(1):119. doi: 10.3390/bios13010119.
10
Ultrasensitive and multiplexed miRNA detection system with DNA-PAINT.
Biosens Bioelectron. 2023 Mar 15;224:115053. doi: 10.1016/j.bios.2022.115053. Epub 2022 Dec 30.

引用本文的文献

1
MiRNA sequencing of platelet and exosome revealed platelet miR-199b-3p as a potential biomarker in lung adenocarcinoma.
Front Immunol. 2025 Aug 29;16:1619448. doi: 10.3389/fimmu.2025.1619448. eCollection 2025.
4
Liquid biopsy in TNBC: significance in diagnostics, prediction, and treatment monitoring.
Front Oncol. 2025 Aug 4;15:1607960. doi: 10.3389/fonc.2025.1607960. eCollection 2025.
6
Advances and applications of biosensors in pulmonary hypertension.
Respir Res. 2025 Apr 15;26(1):147. doi: 10.1186/s12931-025-03221-w.
8
microRNA Detection via Nanostructured Biochips for Early Cancer Diagnostics.
Int J Mol Sci. 2023 Apr 24;24(9):7762. doi: 10.3390/ijms24097762.
9

本文引用的文献

1
Identification of nuclear export inhibitor-based combination therapies in preclinical models of triple-negative breast cancer.
Transl Oncol. 2021 Dec;14(12):101235. doi: 10.1016/j.tranon.2021.101235. Epub 2021 Oct 7.
2
MASH-FRET: A Simplified Approach for Single-Molecule Multiplexing Using FRET.
Anal Chem. 2021 Jun 29;93(25):8856-8863. doi: 10.1021/acs.analchem.1c00848. Epub 2021 Jun 14.
4
Single-Molecule FRET-Based Dynamic DNA Sensor.
ACS Sens. 2021 Mar 26;6(3):1367-1374. doi: 10.1021/acssensors.1c00002. Epub 2021 Mar 15.
5
Single-Molecule Analysis of Nanocircle-Embedded I-Motifs under Crowding.
J Phys Chem B. 2021 Mar 11;125(9):2193-2201. doi: 10.1021/acs.jpcb.0c09640. Epub 2021 Feb 25.
6
Advances in multiplexed techniques for the detection and quantification of microRNAs.
Chem Soc Rev. 2021 Mar 21;50(6):4141-4161. doi: 10.1039/d0cs00609b. Epub 2021 Feb 4.
7
Determination of long non-coding RNAs associated with EZH2 in neuroblastoma by RIP-seq, RNA-seq and ChIP-seq.
Oncol Lett. 2020 Oct;20(4):1. doi: 10.3892/ol.2020.11862. Epub 2020 Jul 13.
8
Tackling the Biological Diversity in Early Triple-Negative Breast Cancer.
Breast Care (Basel). 2020 Jun;15(3):205-207. doi: 10.1159/000508969. Epub 2020 Jun 9.
9
A panel of eight microRNAs is a good predictive parameter for triple-negative breast cancer relapse.
Theranostics. 2020 Jul 9;10(19):8771-8789. doi: 10.7150/thno.46142. eCollection 2020.
10
Construction of Dual-Color Probes with Target-Triggered Signal Amplification for Single-Molecule Imaging of MicroRNA.
ACS Nano. 2020 Jul 28;14(7):8116-8125. doi: 10.1021/acsnano.0c01061. Epub 2020 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验