MASH-FRET:一种使用 FRET 的简化单分子多重检测方法。

MASH-FRET: A Simplified Approach for Single-Molecule Multiplexing Using FRET.

机构信息

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.

出版信息

Anal Chem. 2021 Jun 29;93(25):8856-8863. doi: 10.1021/acs.analchem.1c00848. Epub 2021 Jun 14.

Abstract

Multiplexed detection has been a big motivation in biomarker analysis as it not only saves cost and labor but also improves the reliability of diagnosis. Among the many approaches for multiplexed detection, fluorescence resonance energy transfer (FRET)-based multiplexing is gaining popularity particularly due to its low background and quantitative nature. Although several FRET-based approaches have been developed for multiplexing, they require either multiple FRET pairs in combination with multiple excitation sources or complicated algorithms to accurately assign signals for individual FRET pairs. Therefore, the need for multiple FRET pairs and multiple excitation sources not only complicates the experimental design but also increases the cost and labor. In this regard, multiplexed sensing by tuning the interdye distance of a single FRET pair could be an ideal solution if identification of multiple FRET efficiencies in a single imaging is possible. Here, implementing a program called MASH-FRET, we evaluated the rigor and capability of this program in identifying seemingly overlapped FRET populations obtained from a multiplexed detection experiment using a single FRET pair. Through MASH-FRET-enabled bootstrap-based analysis of FRET data (also called BOBA-FRET), we demonstrated that the resolution and statistical confidence of the poorly resolved or even unresolved FRET populations can be readily determined. Using simulated FRET data, we further demonstrated that the program can easily identify FRET populations separated by ∼0.1 in mean FRET values, indicating an upper limit of ∼9-fold multiplexing without the need for complicated labeling schemes and multiexcitation sources. Therefore, this paper presents a data analysis approach on an existing platform that has a great potential to simplify the technological needs for multiplexing and to broaden the scope of FRET-based single-molecule analyses.

摘要

多重检测在生物标志物分析中是一个很大的动力,因为它不仅节省了成本和劳动力,而且提高了诊断的可靠性。在许多多重检测方法中,基于荧光共振能量转移(FRET)的多重检测方法由于其背景低和定量性质而越来越受欢迎。尽管已经开发了几种基于 FRET 的多重检测方法,但它们要么需要多个 FRET 对与多个激发源结合,要么需要复杂的算法来准确分配各个 FRET 对的信号。因此,不仅需要多个 FRET 对和多个激发源,而且还增加了实验设计的复杂性和成本。在这方面,如果可以在单个成像中识别多个 FRET 效率,则通过调整单个 FRET 对的染料间距离进行多重感测可能是一种理想的解决方案。在这里,我们实施了一个名为 MASH-FRET 的程序,并评估了该程序在识别使用单个 FRET 对从多重检测实验中获得的看似重叠的 FRET 群体方面的严格性和能力。通过 MASH-FRET 启用的基于引导的 FRET 数据分析(也称为 BOBA-FRET),我们证明了分辨率和统计置信度可以很容易地确定较差分辨率或甚至未分辨率的 FRET 群体。使用模拟的 FRET 数据,我们进一步证明该程序可以轻松识别平均 FRET 值相差约 0.1 的 FRET 群体,这表明在无需复杂标记方案和多激发源的情况下,具有约 9 倍的多重化上限。因此,本文提出了一种在现有平台上进行数据分析的方法,该方法具有简化多重化技术需求并拓宽基于 FRET 的单分子分析范围的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索