Suppr超能文献

利用双记忆递归自组织网络进行终生 3D 物体识别和抓取合成。

Lifelong 3D object recognition and grasp synthesis using dual memory recurrent self-organization networks.

机构信息

Department of Artificial Intelligence, University of Groningen, Groningen, 9747 AG, Netherlands.

出版信息

Neural Netw. 2022 Jun;150:167-180. doi: 10.1016/j.neunet.2022.02.027. Epub 2022 Mar 8.

Abstract

Humans learn to recognize and manipulate new objects in lifelong settings without forgetting the previously gained knowledge under non-stationary and sequential conditions. In autonomous systems, the agents also need to mitigate similar behaviour to continually learn the new object categories and adapt to new environments. In most conventional deep neural networks, this is not possible due to the problem of catastrophic forgetting, where the newly gained knowledge overwrites existing representations. Furthermore, most state-of-the-art models excel either in recognizing the objects or in grasp prediction, while both tasks use visual input. The combined architecture to tackle both tasks is very limited. In this paper, we proposed a hybrid model architecture consists of a dynamically growing dual-memory recurrent neural network (GDM) and an autoencoder to tackle object recognition and grasping simultaneously. The autoencoder network is responsible to extract a compact representation for a given object, which serves as input for the GDM learning, and is responsible to predict pixel-wise antipodal grasp configurations. The GDM part is designed to recognize the object in both instances and categories levels. We address the problem of catastrophic forgetting using the intrinsic memory replay, where the episodic memory periodically replays the neural activation trajectories in the absence of external sensory information. To extensively evaluate the proposed model in a lifelong setting, we generate a synthetic dataset due to lack of sequential 3D objects dataset. Experiment results demonstrated that the proposed model can learn both object representation and grasping simultaneously in continual learning scenarios.

摘要

人类在终身环境中学会识别和操作新物体,同时在非平稳和顺序条件下不会忘记以前获得的知识。在自主系统中,代理还需要减轻类似的行为,以不断学习新的物体类别并适应新环境。在大多数传统的深度神经网络中,由于灾难性遗忘问题,这是不可能的,即新获得的知识会覆盖现有的表示。此外,大多数最先进的模型要么擅长识别物体,要么擅长抓取预测,而这两个任务都使用视觉输入。用于解决这两个任务的组合架构非常有限。在本文中,我们提出了一种混合模型架构,由一个动态增长的双内存递归神经网络(GDM)和一个自动编码器组成,以同时解决物体识别和抓取问题。自动编码器网络负责为给定物体提取紧凑的表示,作为 GDM 学习的输入,并负责预测像素级对掌配置。GDM 部分旨在在实例和类别级别识别物体。我们使用内在记忆重放解决灾难性遗忘问题,其中情景记忆在没有外部感官信息的情况下定期重放神经激活轨迹。为了在终身设置中广泛评估所提出的模型,由于缺乏顺序 3D 物体数据集,我们生成了一个合成数据集。实验结果表明,所提出的模型可以在连续学习场景中同时学习物体表示和抓取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验