Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
Nat Commun. 2022 Mar 21;13(1):1490. doi: 10.1038/s41467-022-29228-1.
Due to epistasis, the same mutation can have drastically different phenotypic consequences in different individuals. This phenomenon is pertinent to precision medicine as well as antimicrobial drug development, but its general characteristics are largely unknown. We approach this question by genome-wide assessment of gene essentiality polymorphism in 16 Saccharomyces cerevisiae strains using transposon insertional mutagenesis. Essentiality polymorphism is observed for 9.8% of genes, most of which have had repeated essentiality switches in evolution. Genes exhibiting essentiality polymorphism lean toward having intermediate numbers of genetic and protein interactions. Gene essentiality changes tend to occur concordantly among components of the same protein complex or metabolic pathway and among a group of over 100 mitochondrial proteins, revealing molecular machines or functional modules as units of gene essentiality variation. Most essential genes tolerate transposon insertions consistently among strains in one or more coding segments, delineating nonessential regions within essential genes.
由于上位性,同一突变在不同个体中可能产生截然不同的表型后果。这种现象与精准医学以及抗菌药物的开发都密切相关,但它的一般特征在很大程度上尚不清楚。我们通过使用转座子插入诱变对 16 株酿酒酵母菌株的全基因组基因必需性多态性进行评估来研究这个问题。我们观察到 9.8%的基因存在必需性多态性,其中大多数基因在进化过程中经历了多次必需性转换。表现出必需性多态性的基因倾向于具有中等数量的遗传和蛋白质相互作用。基因必需性变化往往在同一蛋白质复合物或代谢途径的组成部分之间以及 100 多个线粒体蛋白组中一致发生,这揭示了分子机器或功能模块作为基因必需性变化的单位。大多数必需基因在一个或多个编码片段中在一个或多个菌株中都能一致地耐受转座子插入,从而划定必需基因内的非必需区域。