Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Nat Commun. 2024 Jul 6;15(1):5672. doi: 10.1038/s41467-024-50002-y.
While the underlying genetic changes have been uncovered in some cases of adaptive evolution, the lack of a systematic study prevents a general understanding of the genomic basis of adaptation. For example, it is unclear whether protein-coding or noncoding mutations are more important to adaptive evolution and whether adaptations to different environments are brought by genetic changes distributed in diverse genes and biological processes or concentrated in a core set. We here perform laboratory evolution of 3360 Saccharomyces cerevisiae populations in 252 environments of varying levels of stress. We find the yeast adaptations to be primarily fueled by large-effect coding mutations overrepresented in a relatively small gene set, despite prevalent antagonistic pleiotropy across environments. Populations generally adapt faster in more stressful environments, partly because of greater benefits of the same mutations in more stressful environments. These and other findings from this model eukaryote help unravel the genomic principles of environmental adaptation.
虽然在某些适应进化的情况下已经揭示了潜在的遗传变化,但缺乏系统的研究阻止了对适应的基因组基础的普遍理解。例如,目前还不清楚是编码蛋白的突变还是非编码突变对适应进化更为重要,以及对不同环境的适应是由分布在不同基因和生物过程中的遗传变化带来的,还是集中在一个核心集上。我们在这里对 3360 个酿酒酵母种群进行了 252 种不同应激水平的实验室进化。我们发现,尽管在不同环境中普遍存在拮抗多效性,但酵母的适应主要是由相对较小的基因集中大量效应编码突变驱动的。种群通常在压力更大的环境中更快地适应,部分原因是在压力更大的环境中相同突变的益处更大。这些以及来自这个模式真核生物的其他发现有助于揭示环境适应的基因组原则。