Sheyfer D, Servis Michael J, Zhang Qingteng, Lal J, Loeffler T, Dufresne E M, Sandy A R, Narayanan S, Sankaranarayanan Subramanian K R S, Szczygiel R, Maj P, Soderholm L, Antonio Mark R, Stephenson G B
X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States.
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States.
J Phys Chem B. 2022 Mar 31;126(12):2420-2429. doi: 10.1021/acs.jpcb.1c09996. Epub 2022 Mar 22.
Liquid-liquid extraction (LLE), the go-to process for a variety of chemical separations, is limited by spontaneous organic phase splitting upon sufficient solute loading, called third phase formation. In this study we explore the applicability of critical phenomena theory to gain insight into this deleterious phase behavior with the goal of improving separations efficiency and minimizing waste. A series of samples representative of rare earth purification were constructed to include each of one light and one heavy lanthanide (cerium and lutetium) paired with one of two common malonamide extractants (DMDOHEMA and DMDBTDMA). The resulting postextraction organic phases are chemically complex and often form rich hierarchical structures whose statics and dynamics near the critical point were probed herein with small-angle X-ray scattering and high-speed X-ray photon correlation spectroscopy. Despite their different extraction behaviors, all samples show remarkably similar critical behavior with exponents well described by classical critical point theory consistent with the 3D Ising model, where the critical behavior is characterized by fluctuations with a single diverging length scale. This unexpected result indicates a significant reduction in relevant chemical parameters at the critical point, indicating that the underlying behavior of phase transitions in LLE rely on far fewer variables than are generally assumed. The obtained scalar order parameter is attributed to the extractant fraction of the extractant/diluent mixture, revealing that other solution components and their respective concentrations simply shift the critical temperature but do not affect the nature of the critical fluctuations. These findings point to an opportunity to drastically simplify studies of liquid-liquid phase separation and phase diagram development in general while providing insights into LLE process improvement.
液-液萃取(LLE)是多种化学分离的常用方法,但在溶质负载量足够时会受到自发有机相分裂的限制,即所谓的第三相形成。在本研究中,我们探索临界现象理论的适用性,以深入了解这种有害的相行为,目的是提高分离效率并减少浪费。构建了一系列代表稀土纯化的样品,其中包括一种轻镧系元素和一种重镧系元素(铈和镥),它们分别与两种常见的丙二酰胺萃取剂(DMDOHEMA和DMDBTDMA)之一配对。萃取后的有机相化学性质复杂,通常会形成丰富的层次结构,本文利用小角X射线散射和高速X射线光子相关光谱对临界点附近的静态和动态性质进行了探测。尽管它们的萃取行为不同,但所有样品都表现出非常相似的临界行为,其指数可以用与三维伊辛模型一致的经典临界点理论很好地描述,其中临界行为的特征是具有单一发散长度尺度的涨落。这一意外结果表明临界点处相关化学参数显著减少,这表明LLE中相变的基本行为所依赖的变量比通常假设的要少得多。所获得的标量序参量归因于萃取剂/稀释剂混合物中的萃取剂分数,这表明其他溶液成分及其各自的浓度只会改变临界温度,而不会影响临界涨落的性质。这些发现为大幅简化液-液相分离和相图开发的研究提供了机会,同时也为LLE工艺改进提供了见解。