Suppr超能文献

The pervasive impact of critical fluctuations in liquid-liquid extraction organic phases.

作者信息

Servis Michael J, Nayak Srikanth, Seifert Soenke

机构信息

Argonne National Laboratory, Chemical Sciences and Engineering Division, Lemont, Illinois 60439, USA.

Argonne National Laboratory, X-ray Science Division, Lemont, Illinois 60439, USA.

出版信息

J Chem Phys. 2021 Dec 28;155(24):244506. doi: 10.1063/5.0074995.

Abstract

Liquid-liquid extraction is an essential chemical separation technique where polar solutes are extracted from an aqueous phase into a nonpolar organic solvent by amphiphilic extractant molecules. A fundamental limitation to the efficiency of this important technology is third phase formation, wherein the organic phase splits upon sufficient loading of polar solutes. The nanoscale drivers of phase splitting are challenging to understand in the complex hierarchically structured organic phases. In this study, we demonstrate that the organic phase structure and phase behavior are fundamentally connected in a way than can be understood with critical phenomena theory. For a series of binary mixtures of trialkyl phosphate extractants with linear alkane diluents, we combine small angle x-ray scattering and molecular dynamics simulations to demonstrate how the organic phase mesostructure over a wide range of compositions is dominated by critical concentration fluctuations associated with the critical point of the third phase formation phase transition. These findings reconcile many longstanding inconsistencies in the literature where small angle scattering features, also consistent with such critical fluctuations, were interpreted as reverse micellar-like particles. Overall, this study shows how the organic phase mesostructure and phase behavior are intrinsically linked, deepening our understanding of both and providing a new framework for using molecular structure and thermodynamic variables to control mesostructure and phase behavior in liquid-liquid extraction.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验