Suppr超能文献

联邦深度学习在小脑共济失调诊断中的应用:隐私保护与自动特征提取器

Federated Deep Learning for the Diagnosis of Cerebellar Ataxia: Privacy Preservation and Auto-Crafted Feature Extractor.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:803-811. doi: 10.1109/TNSRE.2022.3161272. Epub 2022 Mar 31.

Abstract

Cerebellar ataxia (CA) is concerned with the incoordination of movement caused by cerebellar dysfunction. Movements of the eyes, speech, trunk, and limbs are affected. Conventional machine learning approaches utilizing centralised databases have been used to objectively diagnose and quantify the severity of CA. Although these approaches achieved high accuracy, large scale deployment will require large clinics and raises privacy concerns. In this study, we propose an image transformation-based approach to leverage the advantages of state-of-the-art deep learning with federated learning in diagnosing CA. We use motion capture sensors during the performance of a standard neurological balance test obtained from four geographically separated clinics. The recurrence plot, melspectrogram, and poincaré plot are three transformation techniques explored. Experimental results indicate that the recurrence plot yields the highest validation accuracy (86.69%) with MobileNetV2 model in diagnosing CA. The proposed scheme provides a practical solution with high diagnosis accuracy, removing the need for feature engineering and preserving data privacy for a large-scale deployment.

摘要

小脑性共济失调(CA)是指由于小脑功能障碍导致的运动不协调。眼睛、言语、躯干和四肢的运动都会受到影响。传统的机器学习方法利用集中式数据库来客观诊断和量化 CA 的严重程度。虽然这些方法达到了很高的准确性,但大规模部署还需要大型诊所,并引发隐私问题。在这项研究中,我们提出了一种基于图像变换的方法,利用最先进的深度学习和联邦学习的优势来诊断 CA。我们在四个地理位置分散的诊所进行的标准神经平衡测试中使用运动捕捉传感器。探索了三种变换技术:递归图、梅尔频谱图和庞加莱图。实验结果表明,在诊断 CA 时,递归图与 MobileNetV2 模型结合可获得最高的验证准确率(86.69%)。该方案提供了一种具有高精度诊断的实用解决方案,无需特征工程,并保护数据隐私,以实现大规模部署。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验