Suppr超能文献

利用决策支持系统进行基准分析和区域精神卫生保健的组织改进:西班牙巴斯克地区吉普斯夸省(Gipuzkoa)精神卫生生态系统的效率、稳定性和熵评估。

Use of a decision support system for benchmarking analysis and organizational improvement of regional mental health care: Efficiency, stability and entropy assessment of the mental health ecosystem of Gipuzkoa (Basque Country, Spain).

机构信息

Department of Quantitative Methods, Universidad Loyola Andalucía, Seville, Spain.

Department of Psychology, Universidad Loyola Andalucía, Seville, Spain.

出版信息

PLoS One. 2022 Mar 22;17(3):e0265669. doi: 10.1371/journal.pone.0265669. eCollection 2022.

Abstract

Decision support systems are appropriate tools for guiding policymaking processes, especially in mental health (MH), where care provision should be delivered in a balanced and integrated way. This study aims to develop an analytical process for (i) assessing the performance of an MH ecosystem and (ii) identifying benchmark and target-for-improvement catchment areas. MH provision (inpatient, day and outpatient types of care) was analysed in the Mental Health Network of Gipuzkoa (Osakidetza, Basque Country, Spain) using a decision support system that integrated data envelopment analysis, Monte Carlo simulation and artificial intelligence. The unit of analysis was the 13 catchment areas defined by a reference MH centre. MH ecosystem performance was assessed by the following indicators: relative technical efficiency, stability and entropy to guide organizational interventions. Globally, the MH system of Gipuzkoa showed high efficiency scores in each main type of care (inpatient, day and outpatient), but it can be considered unstable (small changes can have relevant impacts on MH provision and performance). Both benchmark and target-for-improvement areas were identified and described. This article provides a guide for evidence-informed decision-making and policy design to improve the continuity of MH care after inpatient discharges. The findings show that it is crucial to design interventions and strategies (i) considering the characteristics of the area to be improved and (ii) assessing the potential impact on the performance of the global MH care ecosystem. For performance improvement, it is recommended to reduce admissions and readmissions for inpatient care, increase workforce capacity and utilization of day care services and increase the availability of outpatient care services.

摘要

决策支持系统是指导决策过程的合适工具,特别是在精神健康(MH)领域,应该以平衡和综合的方式提供护理服务。本研究旨在开发一种分析流程,用于 (i) 评估 MH 生态系统的绩效,以及 (ii) 确定基准和改进目标的集水区。使用集成数据包络分析、蒙特卡罗模拟和人工智能的决策支持系统,对 Gipuzkoa 精神健康网络(西班牙巴斯克地区的 Osakidetza)中的 MH 供应(住院、日间和门诊护理类型)进行了分析。分析单位是由参考 MH 中心定义的 13 个集水区。MH 生态系统的绩效通过以下指标进行评估:相对技术效率、稳定性和熵,以指导组织干预。总体而言,Gipuzkoa 的 MH 系统在每种主要护理类型(住院、日间和门诊)中都表现出较高的效率得分,但它被认为是不稳定的(小的变化可能对 MH 供应和绩效产生重大影响)。确定并描述了基准和改进目标区域。本文为基于证据的决策制定和政策设计提供了指导,以改善住院患者出院后的 MH 护理连续性。研究结果表明,设计干预措施和策略时,必须考虑到要改进的区域的特点,并评估对全球 MH 护理生态系统绩效的潜在影响。为了提高绩效,建议减少住院护理的入院和再入院,增加劳动力能力和日间护理服务的利用,以及增加门诊护理服务的供应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fb/8939819/c3af09567fda/pone.0265669.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验