Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China.
Adv Mater. 2022 May;34(18):e2110585. doi: 10.1002/adma.202110585. Epub 2022 Apr 3.
Manufacturing advanced solid-state electrolytes (SSEs) for flexible rechargeable batteries becomes increasingly important but remains grand challenge. The sophisticated structure of robust animal dermis and good water-retention of plant cell in nature grant germane inspirations for designing high-performance SSEs. Herein, tough bioinspired SSEs with intrinsic hydroxide ion (OH ) conduction are constructed by in situ formation of OH conductive ionomer network within a hollow-polymeric-microcapsule-decorated hydrogel polymer network. By virtue of the bioinspired design and dynamic dual-penetrating network structure, the bioinspired SSEs simultaneously obtain mechanical robustness with 1800% stretchability, good water uptake of 107 g g and water retention, and superhigh ion conductivity of 215 mS cm . The nanostructure of bioinspired SSE and related ion-conduction mechanism are revealed and visualized by molecular dynamics simulation, where plenty of compact and superfast ion-transport channels are constructed, contributing to superhigh ion conductivity. As a result, the flexible solid-state zinc-air batteries assembled with bioinspired SSEs witness high power density of 148 mW cm , specific capacity of 758 mAh g and ultralong cycling stability of 320 h as well as outstanding flexibility. The bioinspired methodology and deep insight of ion-conduction mechanism will shed light on the design of advanced SSEs for flexible energy conversion and storage systems.
用于柔性可充电电池的先进固态电解质(SSE)的制造变得越来越重要,但仍然是一个重大挑战。坚固的动物真皮的复杂结构和植物细胞的良好保水能力为设计高性能 SSE 提供了相关的灵感。在此,通过在空心聚合物微胶囊修饰的水凝胶聚合物网络内原位形成 OH 导电离聚物网络,构建了具有固有 OH 传导能力的坚韧仿生 SSE。得益于仿生设计和动态双重渗透网络结构,仿生 SSE 同时获得了 1800%的拉伸延展性、107 g/g 的高吸水性和保水能力以及 215 mS cm 的超高离子电导率。通过分子动力学模拟揭示和可视化仿生 SSE 的纳米结构和相关的离子传导机制,其中构建了大量密集且超快的离子传输通道,有助于实现超高离子电导率。结果,组装有仿生 SSE 的柔性固态锌空气电池表现出 148 mW cm 的高功率密度、758 mAh g 的比容量和 320 小时的超长循环稳定性以及出色的柔韧性。仿生方法和离子传导机制的深刻见解将为用于柔性能量转换和存储系统的先进 SSE 的设计提供启示。