Shchur Yaroslav, Beltramo Guillermo, Andrushchak Anatolii S, Vitusevich Svetlana, Huber Patrick, Adamiv Volodymyr, Teslyuk Ihor, Boichuk Nazarii, Kityk Andriy V
Institute for Condensed Matter Physics, 1 Svientsitskii str., 79011 Lviv, Ukraine.
Institute of Biological Information Processing Mechanobiology (IBI-2), Forschungszentrum Juelich, D-52425 Juelich, Germany.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Jul 5;275:121157. doi: 10.1016/j.saa.2022.121157. Epub 2022 Mar 16.
The lattice dynamics of preferentially aligned nanocrystals formed upon drying of aqueous Ba(NO) solutions in a mesoporous silica glass traversed by tubular pores of approximately 12 nm are explored by Raman scattering. To interpret the experiments on the confined nanocrystals polarized Raman spectra of bulk single crystals and X-ray diffraction experiments are also performed. Since a cubic symmetry is inherent to Ba(NO), a special Raman scattering geometry was utilized to separate the phonon modes of A and E species. Combining group-theory analysis and ab initio lattice dynamics calculations a full interpretation of all Raman lines of the bulk single crystal is achieved. Apart from a small confinement-induced line broadening, the peak positions and normalized peak intensities of the Raman spectra of the nanoconfined and macroscopic crystals are identical. Interestingly, the Raman scattering experiment indicates the existence of comparatively large,∼10-20 μm, single-crystalline regions of Ba(NO) embedded in the porous host, near three orders of magnitude larger than the average size of single nanopores. This is contrast to the initial assumption of non-interconnected pores. It rather indicates an inter-pore propagation of the crystallization front, presumably via microporosity in the pore walls.
通过拉曼散射研究了在具有约12纳米管状孔的介孔二氧化硅玻璃中干燥硝酸钡水溶液时形成的优先排列纳米晶体的晶格动力学。为了解释对受限纳米晶体的实验,还进行了块状单晶的偏振拉曼光谱和X射线衍射实验。由于硝酸钡具有立方对称性,因此采用了特殊的拉曼散射几何结构来分离A和E物种的声子模式。结合群论分析和从头算晶格动力学计算,实现了对块状单晶所有拉曼谱线的完整解释。除了因受限引起的小线宽展宽外,纳米受限晶体和宏观晶体的拉曼光谱的峰位和归一化峰强度是相同的。有趣的是,拉曼散射实验表明,在多孔主体中存在相对较大的(约10 - 20微米)硝酸钡单晶区域,比单个纳米孔的平均尺寸大近三个数量级。这与孔不相互连通的初始假设相反。这反而表明结晶前沿可能通过孔壁中的微孔在孔间传播。