Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Cell Syst. 2022 May 18;13(5):376-387.e8. doi: 10.1016/j.cels.2022.02.006. Epub 2022 Mar 21.
Pooled genetic libraries have improved screening throughput for mapping genotypes to phenotypes. However, selectable phenotypes are limited, restricting screening to outcomes with a low spatiotemporal resolution. Here, we integrated live-cell imaging with pooled library-based screening. To enable intracellular multiplexing, we developed a method called EPICode that uses a combination of short epitopes, which can also appear in various subcellular locations. EPICode thus enables the use of live-cell microscopy to characterize a phenotype of interest over time, including after sequential stimulatory/inhibitory manipulations, and directly connects behavior to the cellular genotype. To test EPICode's capacity against an important milestone-engineering and optimizing dynamic, live-cell reporters-we developed a live-cell PKA kinase translocation reporter with improved sensitivity and specificity. The use of epitopes as fluorescent barcodes introduces a scalable strategy for high-throughput screening broadly applicable to protein engineering and drug discovery settings where image-based phenotyping is desired.
基因文库的组合提高了将基因型映射到表型的筛选通量。然而,可选择的表型是有限的,这限制了筛选只能应用于时空分辨率较低的结果。在这里,我们将活细胞成像与基于文库的筛选相结合。为了实现细胞内的多重检测,我们开发了一种称为 EPICode 的方法,该方法使用短表位的组合,这些表位也可以出现在各种亚细胞位置。因此,EPICode 可以使用活细胞显微镜来随时间描述感兴趣的表型,包括在连续的刺激/抑制操作之后,并且可以直接将行为与细胞基因型联系起来。为了测试 EPICode 在一个重要里程碑上的能力——工程和优化动态的、活细胞报告基因——我们开发了一种具有更高灵敏度和特异性的活细胞 PKA 激酶易位报告基因。将表位用作荧光条形码引入了一种可扩展的高通量筛选策略,广泛适用于需要基于图像的表型分析的蛋白质工程和药物发现环境。