Suppr超能文献

事件触发时滞脉冲控制在非线性系统中的应用及对复杂神经网络的分析。

Event-triggered delayed impulsive control for nonlinear systems with application to complex neural networks.

机构信息

School of Mathematics and Statistics, Shandong Normal University, Ji'nan, 250014, PR China.

School of Mathematics and Statistics, Shandong Normal University, Ji'nan, 250014, PR China; School of Automation and Electrical Engineering, Linyi University, Linyi, 276005, PR China.

出版信息

Neural Netw. 2022 Jun;150:213-221. doi: 10.1016/j.neunet.2022.03.007. Epub 2022 Mar 10.

Abstract

This paper studies the Lyapunov stability of nonlinear systems and the synchronization of complex neural networks in the framework of event-triggered delayed impulsive control (ETDIC), where the effect of time delays in impulses is fully considered. Based on the Lyapunov-based event-triggered mechanism (ETM), some sufficient conditions are presented to avoid Zeno behavior and achieve globally asymptotical stability of the addressed system. In the framework of event-triggered impulse control (ETIC), control input is only generated at state-dependent triggered instants and there is no any control input during two consecutive triggered impulse instants, which can greatly reduce resource consumption and control waste. The contributions of this paper can be summarized as follows: Firstly, compared with the classical ETIC, our results not only provide the well-designed ETM to determine the impulse time sequence, but also fully extract the information of time delays in impulses and integrate it into the dynamic analysis of the system. Secondly, it is shown that the time delays in impulses in our results exhibit positive effects, that is, it may contribute to stabilizing a system and achieve better performance. Thirdly, as an application of ETDIC strategies, we apply the proposed theoretical results to synchronization problem of complex neural networks. Some sufficient conditions to ensure the synchronization of complex neural networks are presented, where the information of time delays in impulses is fully fetched in these conditions. Finally, two numerical examples are provided to show the effectiveness and validity of the theoretical results.

摘要

本文在事件触发延迟脉冲控制(ETDIC)框架下研究了非线性系统的 Lyapunov 稳定性和复杂神经网络的同步问题,充分考虑了脉冲时滞的影响。基于基于 Lyapunov 的事件触发机制(ETM),提出了一些充分条件来避免 Zeno 行为并实现所研究系统的全局渐近稳定性。在事件触发脉冲控制(ETIC)框架下,仅在状态相关的触发时刻生成控制输入,并且在两个连续的触发脉冲时刻之间没有任何控制输入,这可以大大减少资源消耗和控制浪费。本文的贡献可以总结如下:首先,与经典的 ETIC 相比,我们的结果不仅提供了精心设计的 ETM 来确定脉冲时间序列,而且充分提取了脉冲时滞的信息,并将其集成到系统的动态分析中。其次,结果表明脉冲时滞在我们的结果中表现出积极的效果,即它可能有助于稳定系统并实现更好的性能。第三,作为 ETDIC 策略的应用,我们将提出的理论结果应用于复杂神经网络的同步问题。提出了一些充分条件来确保复杂神经网络的同步,这些条件充分利用了脉冲时滞的信息。最后,通过两个数值例子验证了理论结果的有效性和正确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验