Suppr超能文献

Fixed-Time Stability of Nonlinear Impulsive Systems and its Application to Inertial Neural Networks.

作者信息

Hua Lanfeng, Zhu Hong, Zhong Shouming, Zhang Yuping, Shi Kaibo, Kwon Oh-Min

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):1872-1883. doi: 10.1109/TNNLS.2022.3185664. Epub 2024 Feb 5.

Abstract

This article is concerned with the fixed-time stability (FTS) problem of nonlinear impulsive systems (NISs). By means of the impulsive control mechanism and Lyapunov functions theory, several sufficient conditions are established to ensure the FTS of general NISs. Meanwhile, some novel impulse-dependent settling-time estimation schemes are developed, which fully considers the influence of stabilizing impulses and destabilizing impulses on the convergence rate of the system states. The proposed schemes establish a quantitative relationship between the upper bound of the settling time and impulse effects. It shows that stabilizing impulses can accelerate the convergence rate of the system states and leads to the upper bound of the settling time being smaller. Conversely, destabilizing impulses can reduce it and make the upper bound of the settling time larger. Then, the theoretical results are applied to delayed inertial neural networks (DINNs), where two kinds of controllers are designed to realize fixed-time synchronization of the considered systems in the impulse sense. Finally, some numerical examples are provided to illustrate the validity of the proposed theoretical results.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验