Polak Maciej P, Jacobs Ryan, Mannodi-Kanakkithodi Arun, Chan Maria K Y, Morgan Dane
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1595, USA.
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
J Chem Phys. 2022 Mar 21;156(11):114110. doi: 10.1063/5.0083877.
Quantifying charge-state transition energy levels of impurities in semiconductors is critical to understanding and engineering their optoelectronic properties for applications ranging from solar photovoltaics to infrared lasers. While these transition levels can be measured and calculated accurately, such efforts are time-consuming and more rapid prediction methods would be beneficial. Here, we significantly reduce the time typically required to predict impurity transition levels using multi-fidelity datasets and a machine learning approach employing features based on elemental properties and impurity positions. We use transition levels obtained from low-fidelity (i.e., local-density approximation or generalized gradient approximation) density functional theory (DFT) calculations, corrected using a recently proposed modified band alignment scheme, which well-approximates transition levels from high-fidelity DFT (i.e., hybrid HSE06). The model fit to the large multi-fidelity database shows improved accuracy compared to the models trained on the more limited high-fidelity values. Crucially, in our approach, when using the multi-fidelity data, high-fidelity values are not required for model training, significantly reducing the computational cost required for training the model. Our machine learning model of transition levels has a root mean squared (mean absolute) error of 0.36 (0.27) eV vs high-fidelity hybrid functional values when averaged over 14 semiconductor systems from the II-VI and III-V families. As a guide for use on other systems, we assessed the model on simulated data to show the expected accuracy level as a function of bandgap for new materials of interest. Finally, we use the model to predict a complete space of impurity charge-state transition levels in all zinc blende III-V and II-VI systems.
量化半导体中杂质的电荷态跃迁能级对于理解和设计其光电特性至关重要,这些特性可应用于从太阳能光伏到红外激光等众多领域。虽然这些跃迁能级可以准确测量和计算,但此类工作耗时较长,更快速的预测方法将大有裨益。在此,我们使用多保真数据集和基于元素性质及杂质位置特征的机器学习方法,显著缩短了预测杂质跃迁能级通常所需的时间。我们使用从低保真(即局域密度近似或广义梯度近似)密度泛函理论(DFT)计算获得的跃迁能级,并采用最近提出的修正能带对齐方案进行校正,该方案能很好地近似高保真DFT(即混合HSE06)的跃迁能级。与基于更有限的高保真值训练的模型相比,拟合大型多保真数据库的模型显示出更高的准确性。至关重要的是,在我们的方法中,使用多保真数据时,模型训练不需要高保真值,从而显著降低了训练模型所需的计算成本。我们的跃迁能级机器学习模型在来自II - VI族和III - V族的14个半导体系统上进行平均时,与高保真混合泛函值相比,均方根(平均绝对)误差为0.36(0.27)eV。作为在其他系统上使用的指南,我们在模拟数据上评估了该模型,以显示作为感兴趣新材料带隙函数的预期准确度水平。最后,我们使用该模型预测所有闪锌矿III - V族和II - VI族系统中杂质电荷态跃迁能级的完整空间。