Rahman Md Habibur, Biswas Maitreyo, Mannodi-Kanakkithodi Arun
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
ACS Mater Au. 2024 Oct 25;4(6):557-573. doi: 10.1021/acsmaterialsau.4c00095. eCollection 2024 Nov 13.
Ion migration in semiconductor devices is facilitated by the presence of point defects and has a major influence on electronic and optical properties. It is important to understand and identify ways to mitigate photoinduced and electrically induced defect-mediated ion migration in semiconductors. In this Perspective, we discuss the fundamental mechanisms of defect-mediated ion migration and diffusion as understood through atomistic simulations. The discussion covers a variety of case studies from the literature, with a special focus on metal halide perovskites, important materials for solar absorption and related optoelectronic applications. Tuning the perovskite composition and dimensionality and applying systematic strains are identified as ways to suppress phase segregation and ion migration. This Perspective delves into first-principles modeling approaches for defect migration and diffusion, presenting detailed case studies on the diffusion of defects and dopants in CdTe, hydrogen impurities in halide perovskites, and halogen migration in hybrid perovskites and emphasizing the importance of organic cations. The discussion further extends to accelerating the prediction of migration pathways and barriers through machine learning approaches, particularly the application of crystal-graph neural networks. By combining theoretical insights with practical case studies, this Perspective aims to provide an understanding of defect-mediated ion migration and suggestions for next-generation semiconductor discovery while considering ion migration suppression as one of many design objectives.
半导体器件中的离子迁移因点缺陷的存在而加速,并对电子和光学性质产生重大影响。了解并确定减轻半导体中光致和电致缺陷介导的离子迁移的方法很重要。在这篇综述中,我们讨论了通过原子模拟所理解的缺陷介导的离子迁移和扩散的基本机制。讨论涵盖了文献中的各种案例研究,特别关注金属卤化物钙钛矿,这是用于太阳能吸收及相关光电子应用的重要材料。调整钙钛矿的组成和维度以及施加系统应变被确定为抑制相分离和离子迁移的方法。这篇综述深入探讨了缺陷迁移和扩散的第一性原理建模方法,给出了关于碲化镉中缺陷和掺杂剂扩散、卤化物钙钛矿中氢杂质以及杂化钙钛矿中卤素迁移的详细案例研究,并强调了有机阳离子的重要性。讨论进一步扩展到通过机器学习方法加速迁移路径和势垒的预测,特别是晶体图神经网络的应用。通过将理论见解与实际案例研究相结合,这篇综述旨在在将抑制离子迁移作为众多设计目标之一的同时,增进对缺陷介导的离子迁移的理解,并为下一代半导体的发现提供建议。