Suppr超能文献

关于不对称接力Heck反应的机器学习研究——反应发展的潜在途径

Machine learning studies on asymmetric relay Heck reaction-Potential avenues for reaction development.

作者信息

Das Manajit, Sharma Pooja, Sunoj Raghavan B

机构信息

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

出版信息

J Chem Phys. 2022 Mar 21;156(11):114303. doi: 10.1063/5.0084432.

Abstract

The integration of machine learning (ML) methods into chemical catalysis is evolving as a new paradigm for cost and time economic reaction development in recent times. Although there have been several successful applications of ML in catalysis, the prediction of enantioselectivity (ee) remains challenging. Herein, we describe a ML workflow to predict ee of an important class of catalytic asymmetric transformation, namely, the relay Heck (RH) reaction. A random forest ML model, built using quantum chemically derived mechanistically relevant physical organic descriptors as features, is found to predict the ee remarkably well with a low root mean square error of 8.0 ± 1.3. Importantly, the model is effective in predicting the unseen variants of an asymmetric RH reaction. Furthermore, we predicted the ee for thousands of unexplored complementary reactions, including those leading to a good number of bioactive frameworks, by engaging different combinations of catalysts and substrates drawn from the original dataset. Our ML model developed on the available examples would be able to assist in exploiting the fuller potential of asymmetric RH reactions through a priori predictions before the actual experimentation, which would thus help surpass the trial and error loop to a larger degree.

摘要

近年来,将机器学习(ML)方法整合到化学催化中,正逐渐发展成为一种实现成本和时间经济的反应开发的新范式。尽管ML在催化领域已有多项成功应用,但对对映选择性(ee)的预测仍然具有挑战性。在此,我们描述了一种ML工作流程,用于预测一类重要的催化不对称转化反应,即接力Heck(RH)反应的ee值。我们发现,使用量子化学推导的与机理相关的物理有机描述符作为特征构建的随机森林ML模型,能够以8.0±1.3的低均方根误差出色地预测ee值。重要的是,该模型能够有效地预测不对称RH反应中未见过的变体。此外,通过采用从原始数据集中提取的不同催化剂和底物组合,我们预测了数千个未探索的互补反应的ee值,包括那些可生成大量生物活性骨架的反应。我们基于现有示例开发的ML模型,将能够通过在实际实验之前进行先验预测,协助充分挖掘不对称RH反应的潜力,从而在很大程度上帮助超越试错循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验