Suppr超能文献

经导管主动脉瓣置换术未来愿景:第二代新型聚合物经导管主动脉瓣置换术的研发与优化。

Visions of TAVR Future: Development and Optimization of a Second Generation Novel Polymeric TAVR.

机构信息

Department of Biomedical Engineering, Stony Brook University, T8-050 Health Sciences Center, Stony Brook, NY 11794-8084.

Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ 85721.

出版信息

J Biomech Eng. 2022 Jun 1;144(6). doi: 10.1115/1.4054149.

Abstract

Tissue-based transcatheter aortic valve (AV) replacement (TAVR) devices have been a breakthrough approach for treating aortic valve stenosis. However, with the expansion of TAVR to younger and lower risk patients, issues of long-term durability and thrombosis persist. Recent advances in polymeric valve technology facilitate designing more durable valves with minimal in vivo adverse reactions. We introduce our second-generation polymeric transcatheter aortic valve (TAV) device, designed and optimized to address these issues. We present the optimization process of the device, wherein each aspect of device deployment and functionality was optimized for performance, including unique considerations of polymeric technologies for reducing the volume of the polymer material for lower crimped delivery profiles. The stent frame was optimized to generate larger radial forces with lower material volumes, securing robust deployment and anchoring. The leaflet shape, combined with varying leaflets thickness, was optimized for reducing the flexural cyclic stresses and the valve's hydrodynamics. Our first-generation polymeric device already demonstrated that its hydrodynamic performance meets and exceeds tissue devices for both ISO standard and patient-specific in vitro scenarios. The valve already reached 900 × 106 cycles of accelerated durability testing, equivalent to over 20 years in a patient. The optimization framework and technology led to the second generation of polymeric TAV design- currently undergoing in vitro hydrodynamic testing and following in vivo animal trials. As TAVR use is rapidly expanding, our rigorous bio-engineering optimization methodology and advanced polymer technology serve to establish polymeric TAV technology as a viable alternative to the challenges facing existing tissue-based TAV technology.

摘要

基于组织的经导管主动脉瓣(AV)置换(TAVR)设备是治疗主动脉瓣狭窄的突破性方法。然而,随着 TAVR 向年轻和低风险患者的扩展,长期耐久性和血栓形成问题仍然存在。聚合物瓣膜技术的最新进展有助于设计更耐用的瓣膜,同时减少体内不良反应。我们介绍了我们的第二代聚合物经导管主动脉瓣(TAV)装置,该装置经过设计和优化,以解决这些问题。我们介绍了该装置的优化过程,其中装置部署和功能的各个方面都针对性能进行了优化,包括独特的聚合物技术考虑因素,以减少聚合物材料的体积,从而降低压缩输送轮廓。支架框架经过优化,可在较低的材料体积下产生更大的径向力,确保稳固的部署和锚固。瓣叶形状与不同的瓣叶厚度相结合,可优化减少弯曲循环应力和瓣膜的流体动力学。我们的第一代聚合物装置已经证明,其流体动力学性能在 ISO 标准和患者特定的体外场景中都满足并超过了组织装置。该瓣膜已经达到了 900×106 次加速耐久性测试,相当于患者体内超过 20 年的时间。优化框架和技术导致了第二代聚合物 TAV 设计的出现——目前正在进行体外流体动力学测试,并随后进行体内动物试验。随着 TAVR 的使用迅速扩大,我们严格的生物工程优化方法和先进的聚合物技术有助于将聚合物 TAV 技术确立为现有基于组织的 TAV 技术所面临挑战的可行替代方案。

相似文献

2
Novel Polymeric Valve for Transcatheter Aortic Valve Replacement Applications: In Vitro Hemodynamic Study.
Ann Biomed Eng. 2019 Jan;47(1):113-125. doi: 10.1007/s10439-018-02119-7. Epub 2018 Sep 7.
3
In Vitro Durability and Stability Testing of a Novel Polymeric Transcatheter Aortic Valve.
ASAIO J. 2020 Feb;66(2):190-198. doi: 10.1097/MAT.0000000000000980.
4
Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion.
J Biomech. 2015 Oct 15;48(13):3663-71. doi: 10.1016/j.jbiomech.2015.08.012. Epub 2015 Aug 21.
6
Structural analysis of regional transcatheter aortic valve underexpansion and its implications for subclinical leaflet thrombosis.
Int J Numer Method Biomed Eng. 2022 Oct;38(10):e3641. doi: 10.1002/cnm.3641. Epub 2022 Aug 26.
7
Transcatheter Aortic Valve Replacement for Degenerated Transcatheter Aortic Valves: The TRANSIT International Project.
Circ Cardiovasc Interv. 2021 Jun;14(6):e010440. doi: 10.1161/CIRCINTERVENTIONS.120.010440. Epub 2021 Jun 7.
9
Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study.
PLoS One. 2021 May 17;16(5):e0251579. doi: 10.1371/journal.pone.0251579. eCollection 2021.
10
Stent and Leaflet Stresses in 29-mm Second-Generation Balloon-Expandable Transcatheter Aortic Valve.
Ann Thorac Surg. 2017 Sep;104(3):773-781. doi: 10.1016/j.athoracsur.2017.01.064. Epub 2017 Apr 12.

引用本文的文献

1
Vortex Dynamics in the Sinus of Valsalva.
Bioengineering (Basel). 2025 Mar 11;12(3):279. doi: 10.3390/bioengineering12030279.
2
Polymeric Heart Valves: Do They Represent a Reliable Alternative to Current Prosthetic Devices?
Polymers (Basel). 2025 Feb 20;17(5):557. doi: 10.3390/polym17050557.
3
Transcatheter Aortic Valve Replacement in Bicuspid Aortic Valve Disease: A Review of the Existing Literature.
Cureus. 2025 Jan 29;17(1):e78192. doi: 10.7759/cureus.78192. eCollection 2025 Jan.
4
Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach.
Comput Methods Programs Biomed. 2024 Dec;257:108469. doi: 10.1016/j.cmpb.2024.108469. Epub 2024 Oct 28.
5
Recent advancements in polymeric heart valves: From basic research to clinical trials.
Mater Today Bio. 2024 Aug 10;28:101194. doi: 10.1016/j.mtbio.2024.101194. eCollection 2024 Oct.
7
Reduced Order Modeling for Real-Time Stent Deformation Simulations of Transcatheter Aortic Valve Prostheses.
Ann Biomed Eng. 2024 Feb;52(2):208-225. doi: 10.1007/s10439-023-03360-5. Epub 2023 Nov 14.
8
In silico fatigue optimization of TAVR stent designs with physiological motion in a beating heart model.
Comput Methods Programs Biomed. 2024 Jan;243:107886. doi: 10.1016/j.cmpb.2023.107886. Epub 2023 Oct 25.
10
Nanotechnology in interventional cardiology: A state-of-the-art review.
Int J Cardiol Heart Vasc. 2022 Nov 18;43:101149. doi: 10.1016/j.ijcha.2022.101149. eCollection 2022 Dec.

本文引用的文献

1
Neosinus and Sinus Flow After Self-Expanding and Balloon-Expandable Transcatheter Aortic Valve Replacement.
JACC Cardiovasc Interv. 2021 Dec 27;14(24):2657-2666. doi: 10.1016/j.jcin.2021.09.013. Epub 2021 Nov 24.
2
Transcatheter aortic valve thrombosis: a review of potential mechanisms.
J R Soc Interface. 2021 Nov;18(184):20210599. doi: 10.1098/rsif.2021.0599. Epub 2021 Nov 24.
3
Late stroke after transcatheter aortic valve replacement: a nationwide study.
Sci Rep. 2021 May 5;11(1):9593. doi: 10.1038/s41598-021-89217-0.
4
STS-ACC TVT Registry of Transcatheter Aortic Valve Replacement.
Ann Thorac Surg. 2021 Feb;111(2):701-722. doi: 10.1016/j.athoracsur.2020.09.002. Epub 2020 Nov 16.
7
Design, development, testing at ISO standards and in vivo feasibility study of a novel polymeric heart valve prosthesis.
Biomater Sci. 2020 Aug 21;8(16):4467-4480. doi: 10.1039/d0bm00412j. Epub 2020 Jul 1.
8
Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid-structure interaction analysis.
Biomech Model Mechanobiol. 2020 Oct;19(5):1725-1740. doi: 10.1007/s10237-020-01304-9. Epub 2020 Feb 24.
9
Long-Term Durability of Transcatheter Heart Valves: Insights From Bench Testing to 25 Years.
JACC Cardiovasc Interv. 2020 Jan 27;13(2):235-249. doi: 10.1016/j.jcin.2019.07.049. Epub 2019 Sep 28.
10
In Vitro Durability and Stability Testing of a Novel Polymeric Transcatheter Aortic Valve.
ASAIO J. 2020 Feb;66(2):190-198. doi: 10.1097/MAT.0000000000000980.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验