OM, QM & IS Area, IIM Udaipur, Udaipur, Rajasthan, India.
Economics Area, IIM Udaipur, Udaipur, Rajasthan, India.
Stat Med. 2022 Jul 10;41(15):2711-2724. doi: 10.1002/sim.9380. Epub 2022 Mar 22.
Count data are observed by practitioners across various fields. Often, a substantially large proportion of one or some values causes extra variation and may lead to a particular case of mixed structured data. In these cases, a standard count model may lead to poor inference of the parameters involved because of its inability to account for extra variation. Furthermore, we hypothesize a possible nonlinear relationship of a continuous covariate with the logarithm of the mean count and with the probability of belonging to an inflated category. We propose a semiparametric multiple inflation Poisson (MIP) model that considers the two nonlinear link functions. We develop a sieve maximum likelihood estimator (sMLE) for the regression parameters of interest. We establish the asymptotic behavior of the sMLE. Simulations are conducted to evaluate the performance of the proposed sieve MIP (sMIP). Then, we illustrate the methodology on data from a smoking cessation study. Finally, some remarks and opportunities for future research conclude the article.
计数数据被各个领域的从业者观察到。通常,一个或一些值的很大比例会导致额外的变异,并可能导致特定的混合结构数据情况。在这些情况下,由于标准计数模型无法解释额外的变异,因此可能会导致涉及的参数推断不佳。此外,我们假设连续协变量与均值计数的对数以及属于膨胀类别的概率之间可能存在非线性关系。我们提出了一个半参数多膨胀泊松(MIP)模型,该模型考虑了两个非线性链接函数。我们为感兴趣的回归参数开发了一个筛最大似然估计器(sMLE)。我们建立了 sMLE 的渐近行为。模拟用于评估所提出的筛 MIP(sMIP)的性能。然后,我们在戒烟研究的数据上说明了该方法。最后,文章的结论是一些评论和未来研究的机会。