Suppr超能文献

走向完全定义的纳米催化:深度学习揭示了单钯/碳颗粒的非凡活性。

Toward Totally Defined Nanocatalysis: Deep Learning Reveals the Extraordinary Activity of Single Pd/C Particles.

机构信息

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.

Bridge Institute and Department of Chemistry, University of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States.

出版信息

J Am Chem Soc. 2022 Apr 6;144(13):6071-6079. doi: 10.1021/jacs.2c01283. Epub 2022 Mar 23.

Abstract

Homogeneous catalysis is typically considered "well-defined" from the standpoint of catalyst structure unambiguity. In contrast, heterogeneous nanocatalysis often falls into the realm of "poorly defined" systems. Supported catalysts are difficult to characterize due to their heterogeneity, variety of morphologies, and large size at the nanoscale. Furthermore, an assortment of active metal nanoparticles examined on the support are negligible compared to those in the bulk catalyst used. To solve these challenges, we studied individual particles of the supported catalyst. We made a significant step forward to fully characterize individual catalyst particles. Combining a nanomanipulation technique inside a field-emission scanning electron microscope with neural network analysis of selected individual particles unexpectedly revealed important aspects of activity for widespread and commercially important Pd/C catalysts. The proposed approach unleashed an unprecedented turnover number of 10 attributed to individual palladium on a nanoglobular carbon particle. Offered in the present study is the Totally Defined Catalysis concept that has tremendous potential for the mechanistic research and development of high-performance catalysts.

摘要

均相催化从催化剂结构明确性的角度来看通常被认为是“定义明确的”。相比之下,多相纳米催化往往属于“定义不明确”的体系。负载型催化剂由于其异质性、多种形态和纳米尺度上的较大尺寸,难以进行表征。此外,与用于块状催化剂中的那些相比,在载体上检查的各种活性金属纳米颗粒可以忽略不计。为了解决这些挑战,我们研究了负载型催化剂的单个颗粒。我们在完全表征单个催化剂颗粒方面迈出了重要的一步。在场发射扫描电子显微镜内结合纳米操作技术以及对选定单个颗粒的神经网络分析,出人意料地揭示了广泛且具有商业重要性的 Pd/C 催化剂的活性的重要方面。所提出的方法释放了前所未有的 10 的周转数,归因于纳米球碳颗粒上的单个钯。本研究提出了完全定义的催化概念,该概念具有对高性能催化剂的机理研究和开发的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验