Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.
Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.
J Chem Inf Model. 2022 Apr 11;62(7):1723-1733. doi: 10.1021/acs.jcim.1c01358. Epub 2022 Mar 23.
(Mtb), the causative agent of Tuberculosis, has 11 eukaryotic-like serine/threonine protein kinases, which play essential roles in cell growth, signal transduction, and pathogenesis. Protein kinase G (PknG) regulates the carbon and nitrogen metabolism by phosphorylation of the glycogen accumulation regulator (GarA) protein at Thr21. Protein kinase B (PknB) is involved in cell wall synthesis and cell shape, as well as phosphorylates GarA but at Thr22. While PknG seems to be constitutively activated and recognition of GarA requires phosphorylation in its unstructured tail, PknB activation is triggered by phosphorylation of its activation loop, which allows binding of the forkhead-associated domain of GarA. In the present work, we used molecular dynamics and quantum-mechanics/molecular mechanics simulations of the catalytically competent complex and kinase activity assays to understand PknG/PknB specificity and reactivity toward GarA. Two hydrophobic residues in GarA, Val24 and Phe25, seem essential for PknG binding and allow specificity for Thr21 phosphorylation. On the other hand, phosphorylated residues in PknB bind Arg26 in GarA and regulate its specificity for Thr22. We also provide a detailed analysis of the free energy profile for the phospho-transfer reaction and show why PknG has a constitutively active conformation not requiring priming phosphorylation in contrast to PknB. Our results provide new insights into these two key enzymes relevant for Mtb and the mechanisms of serine/threonine phosphorylation in bacteria.
(Mtb),结核病的病原体,有 11 种真核样丝氨酸/苏氨酸蛋白激酶,它们在细胞生长、信号转导和发病机制中起着重要作用。蛋白激酶 G(PknG)通过磷酸化糖原积累调节蛋白(GarA)蛋白的 Thr21 来调节碳氮代谢。蛋白激酶 B(PknB)参与细胞壁合成和细胞形状,以及磷酸化 GarA,但在 Thr22 处。虽然 PknG 似乎是组成性激活的,并且识别 GarA 需要其无结构尾部的磷酸化,但 PknB 的激活是由其激活环的磷酸化触发的,这允许 GarA 的 forkhead 相关结构域结合。在本工作中,我们使用催化有效复合物的分子动力学和量子力学/分子力学模拟以及激酶活性测定来理解 PknG/PknB 对 GarA 的特异性和反应性。GarA 中的两个疏水性残基 Val24 和 Phe25 似乎对 PknG 结合至关重要,并允许对 Thr21 磷酸化具有特异性。另一方面,PknB 中的磷酸化残基结合 GarA 中的 Arg26,并调节其对 Thr22 的特异性。我们还提供了磷酸转移反应的自由能曲线的详细分析,并展示了为什么 PknG 具有组成性激活构象,而不需要与 PknB 相反的初始磷酸化。我们的结果为这两种与 Mtb 相关的关键酶以及细菌中丝氨酸/苏氨酸磷酸化的机制提供了新的见解。