Suppr超能文献

基于多参数冠状动脉 CT 血管造影预测主要不良心脏事件。

Predicting major adverse cardiac events based on multi-parameter coronary computed tomography angiography.

机构信息

Department of Medical Imaging, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.

出版信息

Med Phys. 2022 Jun;49(6):3612-3623. doi: 10.1002/mp.15616. Epub 2022 Mar 30.

Abstract

OBJECTIVE

To build a nomogram model to improve the prediction of major adverse cardiac events (MACE) using multi-parameter coronary computed tomography angiography (CCTA).

METHODS

All patients underwent CCTA. Those who developed MACE 90 days later but within 2 years between January 2008 and December 2018 were retrospectively enrolled as MACE group, while those without MACE were 1:1 propensity score matched in the control group. CCTA stenosis, plaque qualitative-quantitative characteristics, and fractional flow reserve derived from computed tomography angiography (FFRct) were analyzed and compared between the two groups. The independent risk factors for predicting MACE were obtained through univariate and multivariate regression analysis, after which multi-parameter models were built to predict MACE. Finally, the nomogram for predicting MACE was created using the independent risk factors from multivariate regression analysis.

RESULTS

A total of 483 vessels in 260 patients were successfully analyzed. The combination of CCTA stenosis, plaque qualitative-quantitative characteristics, and FFRct (AUC = 0.922, P < 0.001) showed a higher predictive value compared to CCTA stenosis alone, FFRct alone, plaque qualitative-quantitative characteristics alone, CCTA stenosis combined with plaque qualitative-quantitative characteristics, and CCTA stenosis combined with FFRct (all P < 0.001). Independent risk factors were CCTA stenosis ≥50%, low attenuation plaque, positive remodeling, napkin ring sign, lipid plaque volume proportion, and FFRct. Subsequently, a nomogram was created using these independent risk factors.

CONCLUSIONS

The multi-parameter CCTA model has improved performance in predicting MACE. Nomogram for predicting MACE, which includes these factors, represents a practical and easy-to-use method in the clinical setting.

摘要

目的

建立一个列线图模型,以提高使用多参数冠状动脉计算机断层扫描血管造影(CCTA)预测主要不良心脏事件(MACE)的能力。

方法

所有患者均接受 CCTA 检查。2008 年 1 月至 2018 年 12 月期间,90 天内但在 2 年内发生 MACE 的患者被回顾性纳入 MACE 组,而未发生 MACE 的患者则按照 1:1 倾向评分匹配纳入对照组。对两组患者的 CCTA 狭窄程度、斑块定性定量特征和计算机断层扫描血管造影衍生的血流储备分数(FFRct)进行分析和比较。通过单因素和多因素回归分析,获得预测 MACE 的独立危险因素,然后构建多参数模型预测 MACE。最后,使用多因素回归分析的独立危险因素建立预测 MACE 的列线图。

结果

成功分析了 260 例患者的 483 支血管。CCTA 狭窄程度、斑块定性定量特征和 FFRct 的组合(AUC=0.922,P<0.001)与 CCTA 狭窄程度单独、FFRct 单独、斑块定性定量特征单独、CCTA 狭窄程度与斑块定性定量特征联合、以及 CCTA 狭窄程度与 FFRct 联合相比,具有更高的预测价值(均 P<0.001)。独立危险因素为 CCTA 狭窄程度≥50%、低衰减斑块、正性重构、环形征、脂质斑块容积比例和 FFRct。随后,使用这些独立危险因素创建了一个列线图。

结论

多参数 CCTA 模型在预测 MACE 方面具有更好的性能。包含这些因素的预测 MACE 列线图,代表了一种在临床实践中实用且易于使用的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验